IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1067-d1597262.html
   My bibliography  Save this article

A Day-Ahead Optimal Battery Scheduling Considering the Grid Stability of Distribution Feeders

Author

Listed:
  • Umme Mumtahina

    (Central Queensland University, Rockhampton, QLD 4701, Australia)

  • Sanath Alahakoon

    (Central Queensland University, Gladstone, QLD 4680, Australia)

  • Peter Wolfs

    (Central Queensland University, Rockhampton, QLD 4701, Australia)

Abstract

This study presents a comprehensive framework for optimizing energy management systems by integrating advanced methodologies for weather forecasting, energy cost analysis, and grid stability using a mixed-integer linear programming (MILP) algorithm. A novel approach is proposed for day-ahead weather forecasting, leveraging real-time data extraction from reliable weather websites and applying clear sky modeling to estimate photovoltaic (PV) generation with high accuracy. By automating weather data acquisition, the methodology bridges the gap between weather predictions and practical energy management, providing utilities with a reliable tool for operating and integrating renewable energy. The optimization framework focuses on minimizing the utility bill by analyzing a distribution feeder representative of Australia’s energy infrastructure, incorporating time-of-use (TOU) and flat tariff systems across eight Australian states to simulate realistic energy costs. Furthermore, voltage constraints are applied within the optimization framework to maintain system stability and improve voltage profiles, ensuring both technical reliability and economic efficiency. The proposed framework delivers actionable insights for utility industries, enhancing the scheduling of battery energy storage systems (BESS) and facilitating the integration of renewable energy into the grid.

Suggested Citation

  • Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2025. "A Day-Ahead Optimal Battery Scheduling Considering the Grid Stability of Distribution Feeders," Energies, MDPI, vol. 18(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1067-:d:1597262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1067/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1067-:d:1597262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.