IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v372y2024ics0306261924011577.html
   My bibliography  Save this article

Optimal electric bus scheduling method under hybrid energy supply mode of photovoltaic-energy storage system-power grid

Author

Listed:
  • Bie, Yiming
  • Qin, Wei
  • Wu, Jiabin

Abstract

Currently, the charging energy of electric buses (EBs) primarily relies on the power grid (PG), and the production of the electricity for the power grid still results in carbon emissions. In recent years, a remarkable development has been observed in the photovoltaic (PV) technology. If EBs can be charged using electricity generated from PV, it has great potential to significantly reduce carbon emissions for EB systems at the source. Considering the inherent output power fluctuations from PV source, we propose a hybrid electricity supply mode named “Photovoltaic-Energy Storage System-Power Grid” (PV-ESS-PG). Firstly, considering the characteristics of different electricity supply modes, we introduce charging strategies tailored to different scenarios and formulate a cooperative optimization model for EB dispatching and charging plans. Secondly, we decompose this model into two sub-problems: bus dispatching and charging scheduling. To solve these two sub-problems, we employ the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to obtain the optimization results of bus dispatching plan, charging mode, charging start time, and charging duration. Finally, we validate the proposed method using real-world data of EB operation and PV output power. We further analyze the influences of weather conditions, ESS capacity, and EB rated battery capacity on the optimization results. We find that, compared to the conventional unitary power grid electricity supply mode, the proposed method reduces daily charging costs by 25.48% and carbon emissions by 68.71% of the whole bus route.

Suggested Citation

  • Bie, Yiming & Qin, Wei & Wu, Jiabin, 2024. "Optimal electric bus scheduling method under hybrid energy supply mode of photovoltaic-energy storage system-power grid," Applied Energy, Elsevier, vol. 372(C).
  • Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011577
    DOI: 10.1016/j.apenergy.2024.123774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal scheduling for electric bus fleets based on dynamic programming approach by considering battery capacity fade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    3. Holland, Stephen P. & Mansur, Erin T. & Muller, Nicholas Z. & Yates, Andrew J., 2021. "The environmental benefits of transportation electrification: Urban buses," Energy Policy, Elsevier, vol. 148(PA).
    4. Liu, X. & Liu, X.C. & Xie, C. & Ma, X., 2023. "Impacts of photovoltaic and energy storage system adoption on public transport: A simulation-based optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
    5. Sahu, Alok & Yadav, Neha & Sudhakar, K., 2016. "Floating photovoltaic power plant: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 815-824.
    6. Ji, Jinhua & Wang, Linhong & Yang, Menglin & Bie, Yiming & Hao, Mingjie, 2024. "Optimal deployment of dynamic wireless charging facilities for electric bus route considering stochastic travel times," Energy, Elsevier, vol. 289(C).
    7. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    8. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    9. Shang, Yitong & Liu, Man & Shao, Ziyun & Jian, Linni, 2020. "Internet of smart charging points with photovoltaic Integration: A high-efficiency scheme enabling optimal dispatching between electric vehicles and power grids," Applied Energy, Elsevier, vol. 278(C).
    10. ur Rehman, Naveed & Hijazi, Mohamad & Uzair, Muhammad, 2020. "Solar potential assessment of public bus routes for solar buses," Renewable Energy, Elsevier, vol. 156(C), pages 193-200.
    11. Alwesabi, Yaseen & Wang, Yong & Avalos, Raul & Liu, Zhaocai, 2020. "Electric bus scheduling under single depot dynamic wireless charging infrastructure planning," Energy, Elsevier, vol. 213(C).
    12. Ren, Haoshan & Ma, Zhenjun & Ming Lun Fong, Alan & Sun, Yongjun, 2022. "Optimal deployment of distributed rooftop photovoltaic systems and batteries for achieving net-zero energy of electric bus transportation in high-density cities," Applied Energy, Elsevier, vol. 319(C).
    13. Oh, Myeongchan & Kim, Sung-Min & Park, Hyeong-Dong, 2020. "Estimation of photovoltaic potential of solar bus in an urban area: Case study in Gwanak, Seoul, Korea," Renewable Energy, Elsevier, vol. 160(C), pages 1335-1348.
    14. Martin, H. & Buffat, R. & Bucher, D. & Hamper, J. & Raubal, M., 2022. "Using rooftop photovoltaic generation to cover individual electric vehicle demand—A detailed case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    16. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    17. Kevin R. Mallon & Francis Assadian & Bo Fu, 2017. "Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan," Energies, MDPI, vol. 10(7), pages 1-31, July.
    18. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    19. Shah, Talha Hussain & Shabbir, Altamash & Waqas, Adeel & Janjua, Abdul Kashif & Shahzad, Nadia & Pervaiz, Hina & Shakir, Sehar, 2023. "Techno-economic appraisal of electric vehicle charging stations integrated with on-grid photovoltaics on existing fuel stations: A multicity study framework," Renewable Energy, Elsevier, vol. 209(C), pages 133-144.
    20. Bao, Zhaoyao & Li, Jiapei & Bai, Xuehan & Xie, Chi & Chen, Zhibin & Xu, Min & Shang, Wen-Long & Li, Hailong, 2023. "An optimal charging scheduling model and algorithm for electric buses," Applied Energy, Elsevier, vol. 332(C).
    21. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    22. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Vargas-Salgado, Carlos, 2021. "Multicriteria power generation planning and experimental verification of hybrid renewable energy systems for fast electric vehicle charging stations," Renewable Energy, Elsevier, vol. 179(C), pages 737-755.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    3. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    4. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    5. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    7. Gkiotsalitis, K. & Iliopoulou, C. & Kepaptsoglou, K., 2023. "An exact approach for the multi-depot electric bus scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 306(1), pages 189-206.
    8. Liu, Xiaohan & Yeh, Sonia & Plötz, Patrick & Ma, Wenxi & Li, Feng & Ma, Xiaolei, 2024. "Electric bus charging scheduling problem considering charging infrastructure integrated with solar photovoltaic and energy storage systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    9. Maciej Dzikuć & Rafał Miśko & Szymon Szufa, 2021. "Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland," Energies, MDPI, vol. 14(11), pages 1-12, June.
    10. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    11. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    12. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    13. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    14. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    15. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    16. Edwin R. Grijalva & José María López Martínez, 2019. "Analysis of the Reduction of CO 2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study," Energies, MDPI, vol. 12(3), pages 1-31, February.
    17. Shehabeldeen, Ali & Foda, Ahmed & Mohamed, Moataz, 2024. "A multi-stage optimization of battery electric bus transit with battery degradation," Energy, Elsevier, vol. 299(C).
    18. Nnaemeka V. Emodi & Udochukwu B. Akuru & Michael O. Dioha & Patrick Adoba & Remeredzai J. Kuhudzai & Olusola Bamisile, 2023. "The Role of Internet of Things on Electric Vehicle Charging Infrastructure and Consumer Experience," Energies, MDPI, vol. 16(10), pages 1-18, May.
    19. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    20. Hou, Guofu & Sun, Honghang & Jiang, Ziying & Pan, Ziqiang & Wang, Yibo & Zhang, Xiaodan & Zhao, Ying & Yao, Qiang, 2016. "Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China," Applied Energy, Elsevier, vol. 164(C), pages 882-890.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.