IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp904-932.html
   My bibliography  Save this article

Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)

Author

Listed:
  • Ganesh, Ibram

Abstract

Synthesis of solar fuels including methanol from carbon dioxide (CO2) and water using solar energy or electricity derived from sunlight, which is popularly known as artificial photosynthesis (AP), has been considered to be one of the top-most research priorities all over the world, as on today, as this process can indeed deal with (i) the CO2 related global warming problem, (ii) synthesis of renewable energy resources, and (iii) storing of energy in the form of liquid fuels with considerably high energy density. By using electricity derived from sunlight, the CO2 can be reduced into methanol and other value added chemicals using water as a source of protons and electrons in a device called, artificial leaf. The development of an efficient AP or artificial leaves is possible by the careful analysis and understanding of the complete information available on (i) CO2 reduction process, (ii) water oxidation or splitting reaction, and (iii) the electricity generation from sunlight. The current state-of-the-art on CO2 reduction has been thoroughly reviewed in a recent article “Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities”, (Renewable and Sustainable Energy Reviews, 31, 2014, 221–257), whereas, the same on (i) water oxidation (or splitting) process, and (ii) the electricity generation from sunlight is yet to be reviewed together from the perspective of creating an efficient and economically viable artificial leaves. This article is an attempt to this effect while citing all the up to date relevant references.

Suggested Citation

  • Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:904-932
    DOI: 10.1016/j.rser.2015.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115000295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yasufumi Umena & Keisuke Kawakami & Jian-Ren Shen & Nobuo Kamiya, 2011. "Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å," Nature, Nature, vol. 473(7345), pages 55-60, May.
    2. Bakhtyar, B. & Ibrahim, Y. & Alghoul, M.A. & Aziz, N. & Fudholi, A. & Sopian, K., 2014. "Estimating the CO2 abatement cost: Substitute Price of Avoiding CO2 Emission (SPAE) by Renewable Energy׳s Feed in Tariff in selected countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 205-210.
    3. Budzianowski, Wojciech M., 2012. "Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors," Energy, Elsevier, vol. 41(1), pages 280-297.
    4. van Bergen, F. & Gale, J. & Damen, K.J. & Wildenborg, A.F.B., 2004. "Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production," Energy, Elsevier, vol. 29(9), pages 1611-1621.
    5. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    6. Budzianowski, Wojciech M., 2012. "Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6507-6521.
    7. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    8. Das, Sreejon & Wan Daud, W.M.A., 2014. "Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 765-805.
    9. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    10. Ganesh, Ibram, 2014. "Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 221-257.
    11. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    12. Davis, William & Martín, Mariano, 2014. "Optimal year-round operation for methane production from CO2 and water using wind energy," Energy, Elsevier, vol. 69(C), pages 497-505.
    13. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    14. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    15. Jessica Marshall, 2014. "Solar energy: Springtime for the artificial leaf," Nature, Nature, vol. 510(7503), pages 22-24, June.
    16. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    17. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    18. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    19. Rama Venkatasubramanian & Edward Siivola & Thomas Colpitts & Brooks O'Quinn, 2001. "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, Nature, vol. 413(6856), pages 597-602, October.
    20. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    21. Bob Dickson & Igor Yashayaev & Jens Meincke & Bill Turrell & Stephen Dye & Juergen Holfort, 2002. "Rapid freshening of the deep North Atlantic Ocean over the past four decades," Nature, Nature, vol. 416(6883), pages 832-837, April.
    22. J. G. Fleming & S. Y. Lin & I. El-Kady & R. Biswas & K. M. Ho, 2002. "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature, Nature, vol. 417(6884), pages 52-55, May.
    23. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    24. Dunham, Marc T. & Iverson, Brian D., 2014. "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 758-770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nunes Ferraz Junior, Antônio Djalma & Etchebehere, Claudia & Perecin, Danilo & Teixeira, Suani & Woods, Jeremy, 2022. "Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    3. Li, Wenjia & Ling, Yunyi & Liu, Xiangxin & Hao, Yong, 2017. "Performance analysis of a photovoltaic-thermochemical hybrid system prototype," Applied Energy, Elsevier, vol. 204(C), pages 939-947.
    4. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    5. König, Daniel H. & Baucks, Nadine & Dietrich, Ralph-Uwe & Wörner, Antje, 2015. "Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2," Energy, Elsevier, vol. 91(C), pages 833-841.
    6. Biswas, Bijoy & Singh, Rawel & Kumar, Jitendra & Singh, Raghuvir & Gupta, Piyush & Krishna, Bhavya B. & Bhaskar, Thallada, 2018. "Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil," Renewable Energy, Elsevier, vol. 129(PB), pages 686-694.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    2. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    3. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    4. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    6. Ganesh, Ibram, 2014. "Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 221-257.
    7. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.
    8. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    9. Das, Sreejon & Wan Daud, W.M.A., 2014. "Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 765-805.
    10. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    11. Saeidi, Samrand & Najari, Sara & Fazlollahi, Farhad & Nikoo, Maryam Khoshtinat & Sefidkon, Fatemeh & Klemeš, Jiří Jaromír & Baxter, Larry L., 2017. "Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1292-1311.
    12. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    13. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    14. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    15. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    16. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    17. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    18. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    19. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:904-932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.