IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124014927.html
   My bibliography  Save this article

Energy-saving path planning navigation for solar-powered vehicles considering shadows

Author

Listed:
  • Ku, Jiyoon
  • Kim, Sung-Min
  • Park, Hyeong-Dong

Abstract

Globally, the adverse climate effects caused by greenhouse gas emissions are becoming increasingly apparent, and solutions to increase the use of eco-friendly transportation methods are urgently needed. Introducing solar-powered vehicles (SPVs), which are cars integrated with solar panels capable of generating power, presents a promising solution to reduce urban carbon footprints. However, the low adoption rate of SPVs implies that the benefits—such as environmental friendliness and ability to charge while driving—need to be more palpably experienced by consumers. To address this aspect, in this study, we aimed to develop a navigation system algorithm that guides users along routes that optimize energy consumption and solar energy production from the starting point to the destination. This was done with the objective of providing more tangible benefits from using SPVs. The study focused on the high-traffic urban center of Seoul, where determining solar power availability for a moving SPV is challenging, given the presence of shadows cast by roadside features such as buildings and trees. To achieve this, panoramic images from Google Street View were collected at 10 m intervals from all roads within the research area. From these images, sky and non-sky elements were separated. Subsequently, a hemispherical map was constructed and superimposed with the sun's path. The presence of shadows was determined by assessing whether the sun's path was obstructed by non-sky elements; if the path was unimpeded in the sky, no shadow was recorded. The shadow data obtained at each spot were efficiently stored in a database for quick retrieval and application based on specific locations and departure times. Using this shadow information, the navigation algorithm calculates power generation along a given route and considers the energy consumption of the SPV. Analysis led to the identification of an energy-saving route, which enabled the achievement of energy conservation and CO2 reduction benefits. Furthermore, a comprehensive sensitivity analysis was conducted to examine the impact of four critical parameters—module efficiency, solar panel area, vehicle speed, and departure time—on route selection and net energy consumption. The energy-saving path planning algorithm enhances the economic feasibility of solar charging for SPVs during travel; thus, this study can contribute significantly to the widespread adoption of SPVs, which play a definitive role in reducing transportation's carbon footprint.

Suggested Citation

  • Ku, Jiyoon & Kim, Sung-Min & Park, Hyeong-Dong, 2024. "Energy-saving path planning navigation for solar-powered vehicles considering shadows," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014927
    DOI: 10.1016/j.renene.2024.121424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thiel, Christian & Gracia Amillo, Ana & Tansini, Alessandro & Tsakalidis, Anastasios & Fontaras, Georgios & Dunlop, Ewan & Taylor, Nigel & Jäger-Waldau, Arnulf & Araki, Kenji & Nishioka, Kensuke & Ota, 2022. "Impact of climatic conditions on prospects for integrated photovoltaics in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Pang, Wei & Yu, Hongwen & Zhang, Yongzhe & Yan, Hui, 2019. "Solar photovoltaic based air cooling system for vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 25-31.
    3. ur Rehman, Naveed & Hijazi, Mohamad & Uzair, Muhammad, 2020. "Solar potential assessment of public bus routes for solar buses," Renewable Energy, Elsevier, vol. 156(C), pages 193-200.
    4. Kim, Hanjin & Ku, Jiyoon & Kim, Sung-Min & Park, Hyeong-Dong, 2022. "A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea," Renewable Energy, Elsevier, vol. 190(C), pages 713-729.
    5. Baek, Jieun & Choi, Yosoon, 2023. "Optimal installation and operation planning of parking spaces for solar-powered electric vehicles using hemispherical images," Renewable Energy, Elsevier, vol. 219(P1).
    6. Oh, Myeongchan & Kim, Sung-Min & Park, Hyeong-Dong, 2020. "Estimation of photovoltaic potential of solar bus in an urban area: Case study in Gwanak, Seoul, Korea," Renewable Energy, Elsevier, vol. 160(C), pages 1335-1348.
    7. Pochont, Nitin Ralph & Sekhar Y, Raja, 2023. "Recent trends in photovoltaic technologies for sustainable transportation in passenger vehicles – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jieun Baek & Yosoon Choi, 2022. "Comparative Study on Shading Database Construction for Urban Roads Using 3D Models and Fisheye Images for Efficient Operation of Solar-Powered Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-24, November.
    2. Bie, Yiming & Qin, Wei & Wu, Jiabin, 2024. "Optimal electric bus scheduling method under hybrid energy supply mode of photovoltaic-energy storage system-power grid," Applied Energy, Elsevier, vol. 372(C).
    3. Li, Yanhao & Li, Xin & Zhang, Chengdong & Zhang, Yanxi, 2024. "Optimizing the photovoltaic-assisted electric bus network with rooftop energy supply," Renewable Energy, Elsevier, vol. 234(C).
    4. Kim, Hanjin & Ku, Jiyoon & Kim, Sung-Min & Park, Hyeong-Dong, 2022. "A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea," Renewable Energy, Elsevier, vol. 190(C), pages 713-729.
    5. Baek, Jieun & Choi, Yosoon, 2023. "Optimal installation and operation planning of parking spaces for solar-powered electric vehicles using hemispherical images," Renewable Energy, Elsevier, vol. 219(P1).
    6. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    7. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    8. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    9. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
    10. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    11. Arkadiusz Kampczyk & Wojciech Gamon & Katarzyna Gawlak, 2023. "Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics," Energies, MDPI, vol. 16(6), pages 1-23, March.
    12. Tian, B. & Loonen, R.C.G.M. & Bognár, Á. & Hensen, J.L.M., 2022. "Impacts of surface model generation approaches on raytracing-based solar potential estimation in urban areas," Renewable Energy, Elsevier, vol. 198(C), pages 804-824.
    13. Md. Tanjil Sarker & Mohammed Hussein Saleh Mohammed Haram & Siow Jat Shern & Gobbi Ramasamy & Fahmid Al Farid, 2024. "Second-Life Electric Vehicle Batteries for Home Photovoltaic Systems: Transforming Energy Storage and Sustainability," Energies, MDPI, vol. 17(10), pages 1-23, May.
    14. Antonella Meneghetti & Chiara Pagnin & Patrizia Simeoni, 2021. "Decarbonizing the Cold Chain: Long-Haul Refrigerated Deliveries with On-Board Photovoltaic Energy Integration," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    15. Zhang, Sheng & Yu, Ran & Wen, Zuhui & Xu, Jiayu & Liu, Peihan & Zhou, Yunqiao & Zheng, Xiaoqi & Wang, Lei & Hao, Jiming, 2023. "Impact of labor and energy allocation imbalance on carbon emission efficiency in China's industrial sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Cheng-Jung Yang & Tzu-Chun Yang & Po-Tuan Chen & K. David Huang, 2019. "An Innovative Design of Regional Air Conditioning to Increase Automobile Cabin Energy Efficiency," Energies, MDPI, vol. 12(12), pages 1-16, June.
    17. Li, Bi & Li, Zhinong & He, Deqiang, 2024. "Research and optimization of energy management system for photovoltaic vehicles," Energy, Elsevier, vol. 289(C).
    18. Pochont, Nitin Ralph & Sekhar Y, Raja, 2024. "Local centric energy estimate model for clean and affordable power generation in a solar integrated passenger vehicle," Renewable Energy, Elsevier, vol. 222(C).
    19. Meneghetti, Antonella & Dal Magro, Fabio & Romagnoli, Alessandro, 2021. "Renewable energy penetration in food delivery: Coupling photovoltaics with transport refrigerated units," Energy, Elsevier, vol. 232(C).
    20. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124014927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.