IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp193-200.html
   My bibliography  Save this article

Solar potential assessment of public bus routes for solar buses

Author

Listed:
  • ur Rehman, Naveed
  • Hijazi, Mohamad
  • Uzair, Muhammad

Abstract

Current work investigates a method for evaluating the solar potential of public bus routes for solar electric buses. As access of solar radiation to roads is generally hindered by natural and man-made structures in the surroundings, the methodology involved taking several fisheye images along the chosen bus route. The visible sky and the structures were then separated using an automated image processing algorithm, also presented in this work. Then, these processed images were deployed in a solar assessment model to yield the weighted average yearly solar irradiation on the route. This was then compared with the energy requirements of an electric bus to see what fraction of its demand could be offset. For the case study, an existing public bus route in Invercargill (New Zealand) was analyzed. An appropriate fisheye camera was installed on the rooftop of a vehicle to obtain the images. It was found that installing solar panels on the rooftop of an electric bus may offset ∼8.5% of the electricity demand. This study will help councils (and/or bus contractors) to make decisions about moving to solar photovoltaic integrated electric buses, based on their designated routes.

Suggested Citation

  • ur Rehman, Naveed & Hijazi, Mohamad & Uzair, Muhammad, 2020. "Solar potential assessment of public bus routes for solar buses," Renewable Energy, Elsevier, vol. 156(C), pages 193-200.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:193-200
    DOI: 10.1016/j.renene.2020.04.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio García-Ferrer & Marcos Bujosa & Aránzazu de Juan & Pilar Poncela, 2006. "Demand Forecast and Elasticities Estimation of Public Transport," Journal of Transport Economics and Policy, University of Bath, vol. 40(1), pages 45-67, January.
    2. Shaahid, S.M. & Elhadidy, M.A., 2007. "Technical and economic assessment of grid-independent hybrid photovoltaic-diesel-battery power systems for commercial loads in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1794-1810, October.
    3. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    4. Jung, Jaehoon & Han, SangUk & Kim, Byungil, 2019. "Digital numerical map-oriented estimation of solar energy potential for site selection of photovoltaic solar panels on national highway slopes," Applied Energy, Elsevier, vol. 242(C), pages 57-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenqiang Han & Weidong Zhou & Aimin Sha & Liqun Hu & Runjie Wei, 2023. "Assessing the Photovoltaic Power Generation Potential of Highway Slopes," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    2. Dariusz Masłowski & Małgorzata Dendera-Gruszka & Ewa Kulińska, 2021. "A Decision-Making Model on the Impact of Vehicle Use on Urban Safety," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    3. Chen, Haoqian & Sui, Yi & Shang, Wen-long & Sun, Rencheng & Chen, Zhiheng & Wang, Changying & Han, Chunjia & Zhang, Yuqian & Zhang, Haoran, 2022. "Towards renewable public transport: Mining the performance of electric buses using solar-radiation as an auxiliary power source," Applied Energy, Elsevier, vol. 325(C).
    4. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Žalik, Mitja & Mongus, Domen & Lukač, Niko, 2024. "High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning," Renewable Energy, Elsevier, vol. 222(C).
    2. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    3. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    6. Thiaux, Yaël & Dang, Thu Thuy & Schmerber, Louis & Multon, Bernard & Ben Ahmed, Hamid & Bacha, Seddik & Tran, Quoc Tuan, 2019. "Demand-side management strategy in stand-alone hybrid photovoltaic systems with real-time simulation of stochastic electricity consumption behavior," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Panagiotis G. Kosmopoulos & Marios T. Mechilis & Panagiota Kaoura, 2022. "Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters," Energies, MDPI, vol. 15(24), pages 1-19, December.
    8. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    9. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    10. Tomáš Hubinský & Roman Hajtmanek & Andrea Šeligová & Ján Legény & Robert Špaček, 2023. "Potentials and Limits of Photovoltaic Systems Integration in Historic Urban Structures: The Case Study of Monument Reserve in Bratislava, Slovakia," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    11. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    12. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    13. Aleksandra Besser & Jan K. Kazak & Małgorzata Świąder & Szymon Szewrański, 2019. "A Customized Decision Support System for Renewable Energy Application by Housing Association," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    14. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    15. Javier Domínguez & Carlo Bellini & Ana María Martín & Luis F. Zarzalejo, 2024. "Optimizing Solar Potential Analysis in Cuba: A Methodology for High-Resolution Regional Mapping," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    16. Shorabeh, Saman Nadizadeh & Samany, Najmeh Neysani & Minaei, Foad & Firozjaei, Hamzeh Karimi & Homaee, Mehdi & Boloorani, Ali Darvishi, 2022. "A decision model based on decision tree and particle swarm optimization algorithms to identify optimal locations for solar power plants construction in Iran," Renewable Energy, Elsevier, vol. 187(C), pages 56-67.
    17. Mohammed, Ammar & Pasupuleti, Jagadeesh & Khatib, Tamer & Elmenreich, Wilfried, 2015. "A review of process and operational system control of hybrid photovoltaic/diesel generator systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 436-446.
    18. A.S.M. Arroyo & A. de Juan Fern¨¢ndez, 2014. "Split-then-Combine Method for out-of-sample Combinations of Forecasts," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 3(1), pages 19-37, April.
    19. Souche, Stéphanie, 2010. "Measuring the structural determinants of urban travel demand," Transport Policy, Elsevier, vol. 17(3), pages 127-134, May.
    20. Carlos Beltran-Velamazan & Marta Monzón-Chavarrías & Belinda López-Mesa, 2021. "A Method for the Automated Construction of 3D Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis," Sustainability, MDPI, vol. 13(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:193-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.