IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924011103.html
   My bibliography  Save this article

A “water and carbon” near-zero emission WWTP system: Model development and techno-economic-environmental benefits assessment

Author

Listed:
  • Zhang, Bingqian
  • Yan, Kun
  • Lyu, Yizheng
  • Qian, Yisen
  • Gao, Hanbo
  • Tian, Jinping
  • Zheng, Wei
  • Chen, Lyujun

Abstract

Wastewater treatment plants (WWTPs) have been striving to recover energy and resources, targeting water and carbon near zero emissions. This study aims to develop a water-energy-tailored model for such a proposal. On one hand, this model will unveil the potential for resource and energy recovery by analyzing the energy flow and mass balance of the WWTP. On the other hand, it explores in-situ energy generation by calculating photovoltaic power generation at a specific location using high spatial-temporal resolution data. The model is employed in a typical town-level WWTP with a capacity of 4000 m3/d located in China. The potentials for carbon emission reduction and associated cost-benefit were analyzed under four different power supply paradigms from the perspective of life cycle assessment. Key findings are as follows: firstly, there is untapped chemical energy (1.65 kWh/m3) and thermal energy (2.32 kWh/m3 for heating) potential within wastewater. It is necessary to recover energy from it and enable water reuse to achieve near-zero wastewater discharge. Secondly, it is hard to balance operation energy consumption and in-situ solar energy recovery along with water-borne energy in the WWTP. The tipping point is identified at a scale of 10,000 m3/d, when constructing a photovoltaic and energy storage system within all available space on the plant premises, with a capacity potential of 95 kWh/(m2∙a). Thirdly, under this condition, the cost of the photovoltaic and energy storage system is at least 73% of the electricity cost from the grid over the assessed 25-year period. The economic viability of WWTPs throughout the entire lifecycle remains a challenge. Therefore, caution is warranted in claiming the feasibility of constructing near-zero carbon WWTPs. Policy implications are also carefully discussed, targeting to achieve a balance among technology, economy, and environment while making the model work in real.

Suggested Citation

  • Zhang, Bingqian & Yan, Kun & Lyu, Yizheng & Qian, Yisen & Gao, Hanbo & Tian, Jinping & Zheng, Wei & Chen, Lyujun, 2024. "A “water and carbon” near-zero emission WWTP system: Model development and techno-economic-environmental benefits assessment," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011103
    DOI: 10.1016/j.apenergy.2024.123727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoyuan Li & Denise L. Mauzerall & Mike H. Bergin, 2020. "Global reduction of solar power generation efficiency due to aerosols and panel soiling," Nature Sustainability, Nature, vol. 3(9), pages 720-727, September.
    2. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    3. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    4. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
    5. Cecilia Tortajada & Pierre van Rensburg, 2020. "Drink more recycled wastewater," Nature, Nature, vol. 577(7788), pages 26-28, January.
    6. Chen, Xin & Zhou, Wenjia, 2022. "Economic and ecological assessment of photovoltaic systems for wastewater treatment plants in China," Renewable Energy, Elsevier, vol. 191(C), pages 852-867.
    7. Li, Kewen & Bian, Huiyuan & Liu, Changwei & Zhang, Danfeng & Yang, Yanan, 2015. "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1464-1474.
    8. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Kumar, Dhivya Sampath & Sharma, Anurag & Srinivasan, Dipti & Reindl, Thomas, 2019. "Stability implications of bulk power networks with large scale PVs," Energy, Elsevier, vol. 187(C).
    10. Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
    11. Xueyu Tian & Samuel D. Stranks & Fengqi You, 2021. "Life cycle assessment of recycling strategies for perovskite photovoltaic modules," Nature Sustainability, Nature, vol. 4(9), pages 821-829, September.
    12. Mitchell K. van der Hulst & Mark A. J. Huijbregts & Niels van Loon & Mirjam Theelen & Lucinda Kootstra & Joseph D. Bergesen & Mara Hauck, 2020. "A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1234-1249, December.
    13. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).
    3. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    4. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Leyuan Zhang & Yucheng Zhang & Yang Liu & Sibo Wang & Calvin K. Lee & Yu Huang & Xiangfeng Duan, 2024. "High power density redox-mediated Shewanella microbial flow fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    7. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    9. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    10. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    11. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    12. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
    14. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    15. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    16. Li, Qingqing & Shi, Jinbo & Li, Wenxiang & Xiao, Siyun & Song, Ke & Zhang, Yongbo & Wang, Zhenqi & Gu, Jie & Liu, Bo & Lai, Xiaoming, 2024. "An efficient tool for real-time global carbon neutrality with credibility of delicacy management: A Modelx + MRV + O system," Applied Energy, Elsevier, vol. 372(C).
    17. Pereira, Géssica Michelle dos Santos & Weigert, Gabriela Rosalee & Macedo, Pablo Lopes & Silva, Kiane Alves e & Segura Salas, Cresencio Silvio & Gonçalves, Antônio Maurício de Matos & Nascimento, Hebe, 2022. "Quasi-dynamic operation and maintenance plan for photovoltaic systems in remote areas: The framework of Pantanal-MS," Renewable Energy, Elsevier, vol. 181(C), pages 404-416.
    18. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    19. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    20. Solomon Kiros & Baseem Khan & Sanjeevikumar Padmanaban & Hassan Haes Alhelou & Zbigniew Leonowicz & Om Prakash Mahela & Jens Bo Holm-Nielsen, 2020. "Development of Stand-Alone Green Hybrid System for Rural Areas," Sustainability, MDPI, vol. 12(9), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.