IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v372y2024ics0306261924011462.html
   My bibliography  Save this article

An efficient tool for real-time global carbon neutrality with credibility of delicacy management: A Modelx + MRV + O system

Author

Listed:
  • Li, Qingqing
  • Shi, Jinbo
  • Li, Wenxiang
  • Xiao, Siyun
  • Song, Ke
  • Zhang, Yongbo
  • Wang, Zhenqi
  • Gu, Jie
  • Liu, Bo
  • Lai, Xiaoming

Abstract

Current carbon neutralization systems are time-consuming, which generally require at least one to two months. We propose a highly efficient real-time carbon neutralization mechanism, a Modelx+MRV + O system based on the Internet of Things and blockchain technology for all the carbon reduction scenarios. This mechanism includes an accounting model for a certain distributed carbon reduction scenario, and real-time M, RV, and O systems, enabling enterprises, products, or individuals to reliably reach carbon neutrality in real time. We demonstrated how to build a real-time model (Modelx) by proposing a carbon emission reduction methodology for the returnable packaging scenario and a photovoltaic power generation scenario combining IoT technology for a traditional methodology for polar electricity. We found that the proposed system can achieve real-time analysis based on the monitored turnover number and electricity generated and avoid falsified values. Because carbon neutrality is essential to reduce carbon emissions and combat climate change globally, this system can accelerate the sustainable transformation by managing carbon neutrality globally.

Suggested Citation

  • Li, Qingqing & Shi, Jinbo & Li, Wenxiang & Xiao, Siyun & Song, Ke & Zhang, Yongbo & Wang, Zhenqi & Gu, Jie & Liu, Bo & Lai, Xiaoming, 2024. "An efficient tool for real-time global carbon neutrality with credibility of delicacy management: A Modelx + MRV + O system," Applied Energy, Elsevier, vol. 372(C).
  • Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011462
    DOI: 10.1016/j.apenergy.2024.123763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011462
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qingqing & Shi, Jinbo & Ni, Kan & Wang, Ruohan & Zhang, Chongyi & Yang, Nan & Yang, Yifei & Shen, Yifan & Guo, Ru & Liao, Zhenliang, 2024. "A highly credible and efficient real-time carbon MRV + O system for delicacy management of distributed carbon abatement behaviors," Applied Energy, Elsevier, vol. 355(C).
    2. Andreas Richardson & Jiahua Xu, 2020. "Carbon Trading with Blockchain," Springer Proceedings in Business and Economics, in: Panos Pardalos & Ilias Kotsireas & Yike Guo & William Knottenbelt (ed.), Mathematical Research for Blockchain Economy, pages 105-124, Springer.
    3. Sadawi, Alia Al & Madani, Batool & Saboor, Sara & Ndiaye, Malick & Abu-Lebdeh, Ghassan, 2021. "A comprehensive hierarchical blockchain system for carbon emission trading utilizing blockchain of things and smart contract," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Khaqqi, Khamila Nurul & Sikorski, Janusz J. & Hadinoto, Kunn & Kraft, Markus, 2018. "Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application," Applied Energy, Elsevier, vol. 209(C), pages 8-19.
    5. Bailu Fu & Zhan Shu & Xiaogang Liu, 2018. "Blockchain Enhanced Emission Trading Framework in Fashion Apparel Manufacturing Industry," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    6. Ke, Ming-Tsun & Yeh, Chia-Hung & Su, Cheng-Jie, 2017. "Cloud computing platform for real-time measurement and verification of energy performance," Applied Energy, Elsevier, vol. 188(C), pages 497-507.
    7. Ma, Nan & Waegel, Alex & Hakkarainen, Max & Braham, William W. & Glass, Lior & Aviv, Dorit, 2023. "Blockchain + IoT sensor network to measure, evaluate and incentivize personal environmental accounting and efficient energy use in indoor spaces," Applied Energy, Elsevier, vol. 332(C).
    8. Yadong Lei & Zhili Wang & Deying Wang & Xiaoye Zhang & Huizheng Che & Xu Yue & Chenguang Tian & Junting Zhong & Lifeng Guo & Lei Li & Hao Zhou & Lin Liu & Yangyang Xu, 2023. "Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy," Nature Climate Change, Nature, vol. 13(7), pages 693-700, July.
    9. Wenxiang Li & Luqi Wang & Ye Li & Bo Liu, 2021. "A blockchain-based emissions trading system for the road transport sector: policy design and evaluation," Climate Policy, Taylor & Francis Journals, vol. 21(3), pages 337-352, March.
    10. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    2. Silvia H. Bonilla & Helton R. O. Silva & Marcia Terra da Silva & Rodrigo Franco Gonçalves & José B. Sacomano, 2018. "Industry 4.0 and Sustainability Implications: A Scenario-Based Analysis of the Impacts and Challenges," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    3. Eduard Romulus Goean & Xavier Font & Yu Xiong & Susanne Becken & Jonathan L. Chenoweth & Lorenzo Fioramonti & James Higham & Amit Kumar Jaiswal & Jhuma Sadhukhan & Ya-Yen Sun & Horst Treiblmaier & Sen, 2024. "Using the Blockchain to Reduce Carbon Emissions in the Visitor Economy," Sustainability, MDPI, vol. 16(10), pages 1-11, May.
    4. Agime Gerbeti, 2021. "Market Mechanisms for Reducing Emissions and the Introduction of a Flexible Consumption Tax," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 161-178, December.
    5. Rahel Mandaroux & Chuanwen Dong & Guodong Li, 2021. "A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    6. Hua, Weiqi & Chen, Ying & Qadrdan, Meysam & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2022. "Applications of blockchain and artificial intelligence technologies for enabling prosumers in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Su, Dan & Zhang, Lijun & Peng, Hua & Saeidi, Parvaneh & Tirkolaee, Erfan Babaee, 2023. "Technical challenges of blockchain technology for sustainable manufacturing paradigm in Industry 4.0 era using a fuzzy decision support system," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    9. Sadawi, Alia Al & Madani, Batool & Saboor, Sara & Ndiaye, Malick & Abu-Lebdeh, Ghassan, 2021. "A comprehensive hierarchical blockchain system for carbon emission trading utilizing blockchain of things and smart contract," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    10. Amin Shokri & Ali Shokri & Dean White & Richard Gelski & Yosse Goldberg & Stephen Harrison & Taha Hossein Rashidi, 2022. "EnviroCoin: A Holistic, Blockchain Empowered, Consensus-Based Carbon Saving Unit Ecosystem," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    11. Changping Zhao & Juanjuan Sun & Yu Gong & Zhi Li & Peter Zhou, 2022. "Research on the Blue Carbon Trading Market System under Blockchain Technology," Energies, MDPI, vol. 15(9), pages 1-17, April.
    12. Ferdaus, Md Meftahul & Dam, Tanmoy & Anavatti, Sreenatha & Das, Sarobi, 2024. "Digital technologies for a net-zero energy future: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    13. Sam Hartmann & Sebastian Thomas, 2020. "Applying Blockchain to the Australian Carbon Market," Economic Papers, The Economic Society of Australia, vol. 39(2), pages 133-151, June.
    14. Xiangyang Yu & Xiaojing Wang, 2023. "Research on Carbon-Trading Model of Urban Public Transport Based on Blockchain Technology," Energies, MDPI, vol. 16(6), pages 1-21, March.
    15. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    16. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    17. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    18. Severinsen, A. & Myrland, Ø., 2022. "ShinyRBase: Near real-time energy saving models using reactive programming," Applied Energy, Elsevier, vol. 325(C).
    19. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    20. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.