IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v4y2021i9d10.1038_s41893-021-00737-z.html
   My bibliography  Save this article

Life cycle assessment of recycling strategies for perovskite photovoltaic modules

Author

Listed:
  • Xueyu Tian

    (Cornell University)

  • Samuel D. Stranks

    (University of Cambridge
    University of Cambridge)

  • Fengqi You

    (Cornell University
    Cornell University
    Cornell University)

Abstract

Effective recycling of spent perovskite solar modules will further reduce the energy requirements and environmental consequences of their production and deployment, thus facilitating their sustainable development. Here, through ‘cradle-to-grave’ life cycle assessments of a variety of perovskite solar cell architectures, we report that substrates with conducting oxides and energy-intensive heating processes are the largest contributors to primary energy consumption, global warming potential and other types of impact. We therefore focus on these materials and processes when expanding to ‘cradle-to-cradle’ analyses with recycling as the end-of-life scenario. Our results reveal that recycling strategies can lead to a decrease of up to 72.6% in energy payback time and a reduction of 71.2% in greenhouse gas emission factor. The best recycled module architecture can exhibit an extremely small energy payback time of 0.09 years and a greenhouse gas emission factor as low as 13.4 g CO2 equivalent per kWh; it therefore outcompetes all other rivals, including the market-leading silicon at 1.3–2.4 years and 22.1–38.1 g CO2 equivalent per kWh. Finally, we use sensitivity analyses to highlight the importance of prolonging device lifetime and to quantify the effects of uncertainty induced by the still immature manufacturing processes, changing operating conditions and individual differences for each module.

Suggested Citation

  • Xueyu Tian & Samuel D. Stranks & Fengqi You, 2021. "Life cycle assessment of recycling strategies for perovskite photovoltaic modules," Nature Sustainability, Nature, vol. 4(9), pages 821-829, September.
  • Handle: RePEc:nat:natsus:v:4:y:2021:i:9:d:10.1038_s41893-021-00737-z
    DOI: 10.1038/s41893-021-00737-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-021-00737-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-021-00737-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    2. Zheng, Likai & Xuan, Yimin, 2021. "Performance estimation of a V-shaped perovskite/silicon tandem device: A case study based on a bifacial heterojunction silicon cell," Applied Energy, Elsevier, vol. 301(C).
    3. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    4. Chenxu Zhao & Zhiwen Zhou & Masaud Almalki & Michael A. Hope & Jiashang Zhao & Thibaut Gallet & Anurag Krishna & Aditya Mishra & Felix T. Eickemeyer & Jia Xu & Yingguo Yang & Shaik M. Zakeeruddin & Al, 2024. "Stabilization of highly efficient perovskite solar cells with a tailored supramolecular interface," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xinghao Li & Yong-Lei Wang & Jin Wen & Linlin Zheng & Cheng Qian & Zhonghua Cheng & Hongyu Zuo & Mingqing Yu & Jiayin Yuan & Rong Li & Weiyi Zhang & Yaozu Liao, 2023. "Porous organic polycarbene nanotrap for efficient and selective gold stripping from electronic waste," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Bhati, Naveen & Nazeeruddin, Mohammad Khaja & Maréchal, François, 2024. "Environmental impacts as the key objectives for perovskite solar cells optimization," Energy, Elsevier, vol. 299(C).
    7. Aşkın, Asmin & Kılkış, Şiir & Akınoğlu, Bülent Gültekin, 2023. "Recycling photovoltaic modules within a circular economy approach and a snapshot for Türkiye," Renewable Energy, Elsevier, vol. 208(C), pages 583-596.
    8. Ershad Parvazian & Trystan Watson, 2024. "The roll-to-roll revolution to tackle the industrial leap for perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    9. Huaiqing Luo & Pengwei Li & Junjie Ma & Xue Li & He Zhu & Yajie Cheng & Qin Li & Qun Xu & Yiqiang Zhang & Yanlin Song, 2023. "Bioinspired “cage traps” for closed-loop lead management of perovskite solar cells under real-world contamination assessment," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:4:y:2021:i:9:d:10.1038_s41893-021-00737-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.