IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7349-d839851.html
   My bibliography  Save this article

Application of Combined Models Based on Empirical Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for Short-Term Heating Load Predictions

Author

Listed:
  • Yong Zhou

    (School of Management, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China)

  • Lingyu Wang

    (School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China)

  • Junhao Qian

    (School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China)

Abstract

Short-term building energy consumption prediction is of great significance for the optimized operation of building energy management systems and energy conservation. Due to the high-dimensional nonlinear characteristics of building heat loads, traditional single machine-learning models cannot extract the features well. Therefore, in this paper, a combined model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), four deep learning (DL), and the autoregressive integrated moving average (ARIMA) models is proposed. The DL models include a convolution neural network, long- and short-term memory (LSTM), bi-directional LSTM (bi-LSTM), and the gated recurrent unit. The CEEMDAN decomposed the heating load into different components to extract the different features, while the DL and ARIMA models were used for the prediction of heating load features with high and low complexity, respectively. The single-DL models and the CEEMDAN-DL combinations were also implemented for comparison purposes. The results show that the combined models achieved much higher accuracy compared to the single-DL models and the CEEMDAN-DL combinations. Compared to the single-DL models, the average coefficient of determination (R 2 ), root mean square error (RMSE), and coefficient of variation of the RMSE (CV-RMSE) were improved by 2.91%, 47.93%, and 47.92%, respectively. Furthermore, CEEMDAN-bi-LSTM-ARIMA performed the best of all the combined models, achieving values of R2 = 0.983, RMSE = 70.25 kWh, and CV-RMSE = 1.47%. This study provides a new guide for developing combined models for building energy consumption prediction.

Suggested Citation

  • Yong Zhou & Lingyu Wang & Junhao Qian, 2022. "Application of Combined Models Based on Empirical Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for Short-Term Heating Load Predictions," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7349-:d:839851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    2. Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).
    3. Zhang, Qiang & Tian, Zhe & Ma, Zhijun & Li, Genyan & Lu, Yakai & Niu, Jide, 2020. "Development of the heating load prediction model for the residential building of district heating based on model calibration," Energy, Elsevier, vol. 205(C).
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    5. Liu, Jiangyan & Zhang, Qing & Dong, Zhenxiang & Li, Xin & Li, Guannan & Xie, Yi & Li, Kuining, 2021. "Quantitative evaluation of the building energy performance based on short-term energy predictions," Energy, Elsevier, vol. 223(C).
    6. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    7. Lu, Hongfang & Cheng, Feifei & Ma, Xin & Hu, Gang, 2020. "Short-term prediction of building energy consumption employing an improved extreme gradient boosting model: A case study of an intake tower," Energy, Elsevier, vol. 203(C).
    8. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
    9. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    10. Gao, Bixuan & Huang, Xiaoqiao & Shi, Junsheng & Tai, Yonghang & Zhang, Jun, 2020. "Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 1665-1683.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongsu Kim & Yongjun Lee & Kyungil Chin & Pedro J. Mago & Heejin Cho & Jian Zhang, 2023. "Implementation of a Long Short-Term Memory Transfer Learning (LSTM-TL)-Based Data-Driven Model for Building Energy Demand Forecasting," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    2. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    3. Huakun Huang & Dingrong Dai & Longtao Guo & Sihui Xue & Huijun Wu, 2023. "AI and Big Data-Empowered Low-Carbon Buildings: Challenges and Prospects," Sustainability, MDPI, vol. 15(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    2. Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
    3. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    4. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    5. Fan, Cheng & Lei, Yutian & Sun, Yongjun & Piscitelli, Marco Savino & Chiosa, Roberto & Capozzoli, Alfonso, 2022. "Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context," Energy, Elsevier, vol. 240(C).
    6. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    7. Sibtain, Muhammad & Li, Xianshan & Saleem, Snoober & Ain, Qurat-ul- & Shi, Qiang & Li, Fei & Saeed, Muhammad & Majeed, Fatima & Shah, Syed Shoaib Ahmed & Saeed, Muhammad Hammad, 2022. "Multifaceted irradiance prediction by exploiting hybrid decomposition-entropy-Spatiotemporal attention based Sequence2Sequence models," Renewable Energy, Elsevier, vol. 196(C), pages 648-682.
    8. Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
    9. Gupta, Priya & Singh, Rhythm, 2023. "Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast," Energy, Elsevier, vol. 263(PC).
    10. Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
    11. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    12. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    13. Liang, Xinbin & Zhu, Xu & Chen, Kang & Chen, Siliang & Jin, Xinqiao & Du, Zhimin, 2023. "Endowing data-driven models with rejection ability: Out-of-distribution detection and confidence estimation for black-box models of building energy systems," Energy, Elsevier, vol. 263(PC).
    14. Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
    15. Xu, Shaozhen & Liu, Jun & Huang, Xiaoqiao & Li, Chengli & Chen, Zaiqing & Tai, Yonghang, 2024. "Minutely multi-step irradiance forecasting based on all-sky images using LSTM-InformerStack hybrid model with dual feature enhancement," Renewable Energy, Elsevier, vol. 224(C).
    16. Liang, Xinbin & Chen, Siliang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2023. "Domain knowledge decomposition of building energy consumption and a hybrid data-driven model for 24-h ahead predictions," Applied Energy, Elsevier, vol. 344(C).
    17. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
    18. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Chen, Siliang & Ge, Wei & Liang, Xinbin & Jin, Xinqiao & Du, Zhimin, 2024. "Lifelong learning with deep conditional generative replay for dynamic and adaptive modeling towards net zero emissions target in building energy system," Applied Energy, Elsevier, vol. 353(PB).
    20. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7349-:d:839851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.