Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122483
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hou, Bing & Zhang, Qixing & Liu, Xing & Pang, Huiwen & Zeng, Yue, 2022. "Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells," Energy, Elsevier, vol. 260(C).
- Qun Zhao & Leifu Zhang & Zhongguo Liu & Hongyan Wang & Jie Yao & Xiaowei Zhang & Rongze Yu & Tianqi Zhou & Lixia Kang, 2022. "A Big Data Method Based on Random BP Neural Network and Its Application for Analyzing Influencing Factors on Productivity of Shale Gas Wells," Energies, MDPI, vol. 15(7), pages 1-13, March.
- Amini Toosi, Hashem & Del Pero, Claudio & Leonforte, Fabrizio & Lavagna, Monica & Aste, Niccolò, 2023. "Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization," Applied Energy, Elsevier, vol. 334(C).
- Ma, Kuiyou & Pang, Xiongqi & Pang, Hong & Lv, Chuanbing & Gao, Ting & Chen, Junqing & Huo, Xungang & Cong, Qi & Jiang, Mengya, 2022. "A novel method for favorable zone prediction of conventional hydrocarbon accumulations based on RUSBoosted tree machine learning algorithm," Applied Energy, Elsevier, vol. 326(C).
- Liu, Yazhou & Zeng, Jianhui & Qiao, Juncheng & Yang, Guangqing & Liu, Shu'ning & Cao, Weifu, 2023. "An advanced prediction model of shale oil production profile based on source-reservoir assemblages and artificial neural networks," Applied Energy, Elsevier, vol. 333(C).
- Xie, Weidong & Wang, Meng & Chen, Si & Vandeginste, Veerle & Yu, Zhenghong & Wang, Hua, 2022. "Effects of gas components, reservoir property and pore structure of shale gas reservoir on the competitive adsorption behavior of CO2 and CH4," Energy, Elsevier, vol. 254(PB).
- Hui, Gang & Chen, Zhangxin & Wang, Youjing & Zhang, Dongmei & Gu, Fei, 2023. "An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity," Energy, Elsevier, vol. 266(C).
- Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
- He, Ruiyang & Yang, Hongxing & Sun, Shilin & Lu, Lin & Sun, Haiying & Gao, Xiaoxia, 2022. "A machine learning-based fatigue loads and power prediction method for wind turbines under yaw control," Applied Energy, Elsevier, vol. 326(C).
- Mehmood, Faiza & Ghani, Muhammad Usman & Ghafoor, Hina & Shahzadi, Rehab & Asim, Muhammad Nabeel & Mahmood, Waqar, 2022. "EGD-SNet: A computational search engine for predicting an end-to-end machine learning pipeline for Energy Generation & Demand Forecasting," Applied Energy, Elsevier, vol. 324(C).
- Vo Thanh, Hung & Yasin, Qamar & Al-Mudhafar, Watheq J. & Lee, Kang-Kun, 2022. "Knowledge-based machine learning techniques for accurate prediction of CO2 storage performance in underground saline aquifers," Applied Energy, Elsevier, vol. 314(C).
- Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gou, Liangjie & Yang, Zhaozhong & Min, Chao & Yi, Duo & Li, Xiaogang & Kong, Bing, 2024. "A novel domain adaptation method with physical constraints for shale gas production forecasting," Applied Energy, Elsevier, vol. 371(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
- Wang, Fuwei & Chen, Dongxia & Li, Meijun & Chen, Zhangxin & Wang, Qiaochu & Jiang, Mengya & Rong, Lanxi & Wang, Yuqi & Li, Sha & Iltaf, Khawaja Hasnain & Wanma, Renzeng & Liu, Chen, 2024. "A novel method for predicting shallow hydrocarbon accumulation based on source-fault-sand (S-F-Sd) evaluation and ensemble neural network (ENN)," Applied Energy, Elsevier, vol. 359(C).
- Tian, Runze & Kou, Peng & Zhang, Yuanhang & Mei, Mingyang & Zhang, Zhihao & Liang, Deliang, 2024. "Residual-connected physics-informed neural network for anti-noise wind field reconstruction," Applied Energy, Elsevier, vol. 357(C).
- Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
- He, Ruiyang & Yang, Hongxing & Lu, Lin & Gao, Xiaoxia, 2024. "Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms," Renewable Energy, Elsevier, vol. 225(C).
- Yuxuan Yang & Zhigang Wen & Weichao Tian & Yunpeng Fan & Heting Gao, 2024. "A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection," Energies, MDPI, vol. 17(4), pages 1-16, February.
- Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
- Feiyu Chen & Linghui Sun & Boyu Jiang & Xu Huo & Xiuxiu Pan & Chun Feng & Zhirong Zhang, 2025. "A Review of AI Applications in Unconventional Oil and Gas Exploration and Development," Energies, MDPI, vol. 18(2), pages 1-30, January.
- Boudy Bilal & Kaan Yetilmezsoy & Mohammed Ouassaid, 2024. "Benchmarking of Various Flexible Soft-Computing Strategies for the Accurate Estimation of Wind Turbine Output Power," Energies, MDPI, vol. 17(3), pages 1-36, February.
- Zekun Guo & Hongjun Wang & Xiangwen Kong & Li Shen & Yuepeng Jia, 2021. "Machine Learning-Based Production Prediction Model and Its Application in Duvernay Formation," Energies, MDPI, vol. 14(17), pages 1-17, September.
- Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
- Li, Bo & Yu, Hao & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Meng, SiWei & Liu, He & Wu, HengAn, 2023. "A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks," Energy, Elsevier, vol. 284(C).
- Wang, Wenwen & Kong, Xiaobing & Li, Gangqiang & Liu, Xiangjie & Ma, Lele & Liu, Wenting & Lee, Kwang Y., 2024. "Wind farm control using distributed economic MPC scheme under the influence of wake effect," Energy, Elsevier, vol. 309(C).
- Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
- Nassabeh, Mehdi & You, Zhenjiang & Keshavarz, Alireza & Iglauer, Stefan, 2024. "Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection," Energy, Elsevier, vol. 305(C).
- He, Ruiyang & Yang, Hongxing & Lu, Lin, 2023. "Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control," Applied Energy, Elsevier, vol. 337(C).
- Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
- Cheng, Biyi & Yao, Yingxue & Qu, Xiaobin & Zhou, Zhiming & Wei, Jionghui & Liang, Ertang & Zhang, Chengcheng & Kang, Hanwen & Wang, Hongjun, 2024. "Multi-objective parameter optimization of large-scale offshore wind Turbine's tower based on data-driven model with deep learning and machine learning methods," Energy, Elsevier, vol. 305(C).
- Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
- Wang, Han & Zhang, Mingshan & Xia, Xuanzhe & Tian, Zhenhua & Qin, Xiangjie & Cai, Jianchao, 2024. "Lattice Boltzmann prediction of CO2 and CH4 competitive adsorption in shale porous media accelerated by machine learning for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 370(C).
More about this item
Keywords
Machine learning; Spatial correlation; Shale gas; Production potential; Sweet spot;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018470. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.