IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014563.html
   My bibliography  Save this article

A shale gas production prediction model based on masked convolutional neural network

Author

Listed:
  • Zhou, Wei
  • Li, Xiangchengzhen
  • Qi, ZhongLi
  • Zhao, HaiHang
  • Yi, Jun

Abstract

Shale gas production prediction is of great significance for shale gas exploration and development, as it can optimize exploration strategies and guide adjustments to production parameters for both new and existing wells. However, the dynamic production characteristics of shale gas wells under the influence of multiple factors such as reservoirs, engineering, and production, exhibit complex nonlinear and non-stationary features, leading to low accuracy in predicting shale gas production. To address this issue, a novel masked convolutional neural network (M-CNN) based on masked autoencoders (MAE) is proposed for shale gas production prediction. First, high-dimensional shale gas production data are transformed into images with unknown information using an encoding structure, thereby converting the regression task into images generation task. Then, convolutional neural network is used for image restoration prediction, and the corresponding numerical values at the image positions are extracted as shale gas production prediction results. Specifically, dilated convolution and multi-scale residual structure (MSRS) are developed to improve the feature representation capability of the network. Meanwhile, convolutional block attention module (CBAM) is adopted to enhance the feature extraction ability of the M-CNN. The performance of our method is validated experimentally on shale gas production data of Changning (CN) block in China. The average RMSE, MRE, and R2 on the test sets are 0.211 (104m3/d), 10.9%, and 0.906, respectively, which is much lower than the traditional time series models. Experimental results demonstrate the effectiveness and superiority of the proposed M-CNN method for shale gas production prediction.

Suggested Citation

  • Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014563
    DOI: 10.1016/j.apenergy.2023.122092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    2. Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
    3. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    4. Liu, Haomin & Zhang, Zaixu & Zhang, Tao, 2022. "Shale gas investment decision-making: Green and efficient development under market, technology and environment uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    5. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    6. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
    7. Wang, Qiang & Song, Xiaoxing & Li, Rongrong, 2018. "A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production," Energy, Elsevier, vol. 165(PB), pages 1320-1331.
    8. You, Xu-Tao & Liu, Jian-Yi & Jia, Chun-Sheng & Li, Jun & Liao, Xin-Yi & Zheng, Ai-Wei, 2019. "Production data analysis of shale gas using fractal model and fuzzy theory: Evaluating fracturing heterogeneity," Applied Energy, Elsevier, vol. 250(C), pages 1246-1259.
    9. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    10. Xuechen Li & Xinfang Ma & Fengchao Xiao & Fei Wang & Shicheng Zhang, 2020. "Application of Gated Recurrent Unit (GRU) Neural Network for Smart Batch Production Prediction," Energies, MDPI, vol. 13(22), pages 1-22, November.
    11. Liu, Yazhou & Zeng, Jianhui & Qiao, Juncheng & Yang, Guangqing & Liu, Shu'ning & Cao, Weifu, 2023. "An advanced prediction model of shale oil production profile based on source-reservoir assemblages and artificial neural networks," Applied Energy, Elsevier, vol. 333(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fuwei & Chen, Dongxia & Li, Meijun & Chen, Zhangxin & Wang, Qiaochu & Jiang, Mengya & Rong, Lanxi & Wang, Yuqi & Li, Sha & Iltaf, Khawaja Hasnain & Wanma, Renzeng & Liu, Chen, 2024. "A novel method for predicting shallow hydrocarbon accumulation based on source-fault-sand (S-F-Sd) evaluation and ensemble neural network (ENN)," Applied Energy, Elsevier, vol. 359(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    2. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    3. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    4. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2019. "Will Trump's coal revival plan work? - Comparison of results based on the optimal combined forecasting technique and an extended IPAT forecasting technique," Energy, Elsevier, vol. 169(C), pages 762-775.
    5. Jiang, Hongyan & Cheng, Feng & Wu, Cong & Fang, Dianjun & Zeng, Yuhai, 2024. "A multi-period-sequential-index combination method for short-term prediction of small sample data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Fang, Yu & Jia, Chunhong & Wang, Xin & Min, Fan, 2024. "A fusion gas load prediction model with three-way residual error amendment," Energy, Elsevier, vol. 294(C).
    7. Katende, Allan & Rutqvist, Jonny & Massion, Cody & Radonjic, Mileva, 2023. "Experimental flow-through a single fracture with monolayer proppant at reservoir conditions: A case study on Caney Shale, Southwest Oklahoma, USA," Energy, Elsevier, vol. 273(C).
    8. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    9. Pan, Shaowei & Yang, Bo & Wang, Shukai & Guo, Zhi & Wang, Lin & Liu, Jinhua & Wu, Siyu, 2023. "Oil well production prediction based on CNN-LSTM model with self-attention mechanism," Energy, Elsevier, vol. 284(C).
    10. Wang, Qiang & Zhan, Lina, 2019. "Assessing the sustainability of the shale gas industry by combining DPSIRM model and RAGA-PP techniques: An empirical analysis of Sichuan and Chongqing, China," Energy, Elsevier, vol. 176(C), pages 353-364.
    11. Zhang, Xian-min & Chen, Bai-yan-yue & Zheng, Zhuang-zhuang & Feng, Qi-hong & Fan, Bin, 2023. "New methods of coalbed methane production analysis based on the generalized gamma distribution and field applications," Applied Energy, Elsevier, vol. 350(C).
    12. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    13. Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
    14. Yeqi An & Yulin Zhou & Rongrong Li, 2019. "Forecasting India’s Electricity Demand Using a Range of Probabilistic Methods," Energies, MDPI, vol. 12(13), pages 1-24, July.
    15. Cao, Yan & Jin, Zhijun & Zhu, Rukai & Liu, Kouqi & Bai, Jianing, 2024. "Comprehensive evaluation of the organic-rich saline lacustrine shale in the Lucaogou Formation, Jimusar sag, Junggar Basin, NW China," Energy, Elsevier, vol. 294(C).
    16. Cao, Gaohui & Jiang, Wenbin & Lin, Mian & Ji, Lili & Xu, Zhipeng & Zheng, Siping & Hao, Fang, 2021. "Mortar dynamic coupled model for calculating interface gas exchange between organic and inorganic matters of shale," Energy, Elsevier, vol. 236(C).
    17. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    18. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    19. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    20. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.