IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v374y2024ics0306261924014181.html
   My bibliography  Save this article

Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series

Author

Listed:
  • Liu, Lei
  • Wang, Xinyu
  • Dong, Xue
  • Chen, Kang
  • Chen, Qiuju
  • Li, Bin

Abstract

The inherent randomness and volatility of wind power generation present significant challenges to the reliable and secure operation of the power system. Therefore, it is crucial to have interpretable wind power forecasting (WPF) to ensure seamless grid integration and effective risk assessment. Existing forecasting models often focus on improving WPF performance and ignore the interpretability of the model, resulting in ambiguous forecasting. In this paper, the interpretable feature-temporal transformer (IFTT) for short-term wind power forecasting with multivariate time series is presented. The model uses an encoder-decoder architecture to effectively integrate historical information and future prior information from multiple variables. The designed decoupled feature-temporal self-attention (DFTA) module and variable attention network (VAN) effectively realize the interpretability of temporal information and multi-variable inputs while extracting important features. The Auxiliary Forecasting Network (AFN) plays a key role in providing pseudo-future wind speed predictions, which serve as an essential input for the model's decoder, and enhancing forecasting accuracy through multi-task learning. Experimental results on multiple datasets in different geographical locations show that the proposed algorithm is superior to various advanced methods. Besides, the interpretability of the IFTT model offers valuable insights for ensuring the safety of wind power utilization and supporting informed risk decision-making.

Suggested Citation

  • Liu, Lei & Wang, Xinyu & Dong, Xue & Chen, Kang & Chen, Qiuju & Li, Bin, 2024. "Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series," Applied Energy, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924014181
    DOI: 10.1016/j.apenergy.2024.124035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924014181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:374:y:2024:i:c:s0306261924014181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.