IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v224y2018icp251-266.html
   My bibliography  Save this article

Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests

Author

Listed:
  • Zhu, Juner
  • Zhang, Xiaowei
  • Luo, Hailing
  • Sahraei, Elham

Abstract

Understanding mechanisms of deformation of battery cell components is important in order to improve the mechanical safety of lithium-ion batteries. In this study, micro-scale deformation and failure of fully-discharged battery components including an anode, a cathode, and a separator were investigated at room temperature. Nanoindentation tests and in-situ tensile tests under scanning electron microscope (SEM) were carried out on the electrodes of a commercial battery cell in order to measure the elastic modulus of coating materials and the elastic–plastic and fracture behavior of the electrodes. Additionally, interrupted tests were conducted on a polypropylene separator and its deformation at each stage was investigated under SEM. Samples with the same size were loaded to different strains and then fully unloaded. SEM and X-ray diffraction (XRD) techniques were subsequently used to analyze the changes in the microstructure such as crystal orientation and pore size. From these tests, it was found that cathode and anode coatings have distinct deformation mechanisms. The cathode develops a number of micro cracks on the surface before reaching final failure, while the anode maintains its integrity until later stages of deformation. The separator also shows unique stages of deformation such as elongation of fibrils and formation of new pores until reaching final onset of failure.

Suggested Citation

  • Zhu, Juner & Zhang, Xiaowei & Luo, Hailing & Sahraei, Elham, 2018. "Investigation of the deformation mechanisms of lithium-ion battery components using in-situ micro tests," Applied Energy, Elsevier, vol. 224(C), pages 251-266.
  • Handle: RePEc:eee:appene:v:224:y:2018:i:c:p:251-266
    DOI: 10.1016/j.apenergy.2018.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918307001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jalkanen, K. & Karppinen, J. & Skogström, L. & Laurila, T. & Nisula, M. & Vuorilehto, K., 2015. "Cycle aging of commercial NMC/graphite pouch cells at different temperatures," Applied Energy, Elsevier, vol. 154(C), pages 160-172.
    2. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    3. Ecker, Madeleine & Shafiei Sabet, Pouyan & Sauer, Dirk Uwe, 2017. "Influence of operational condition on lithium plating for commercial lithium-ion batteries – Electrochemical experiments and post-mortem-analysis," Applied Energy, Elsevier, vol. 206(C), pages 934-946.
    4. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    5. Wang, WenWei & Yang, Sheng & Lin, Cheng, 2017. "Clay-like mechanical properties for the jellyroll of cylindrical Lithium-ion cells," Applied Energy, Elsevier, vol. 196(C), pages 249-258.
    6. Capasso, Clemente & Veneri, Ottorino, 2014. "Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles," Applied Energy, Elsevier, vol. 136(C), pages 921-930.
    7. Zhao, Rui & Liu, Jie & Gu, Junjie, 2016. "Simulation and experimental study on lithium ion battery short circuit," Applied Energy, Elsevier, vol. 173(C), pages 29-39.
    8. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    2. Xiao, Feiyu & Xing, Bobin & Kong, Lingzhao & Xia, Yong, 2021. "Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries," Energy, Elsevier, vol. 230(C).
    3. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    4. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    5. Li, Honggang & Zhou, Dian & Zhang, Meihe & Liu, Binghe & Zhang, Chao, 2023. "Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse," Energy, Elsevier, vol. 263(PE).
    6. Song, Yanjie & Gao, Kai & He, Chunwang & Wu, Yikun & Yang, Shuangquan & Li, Na & Yang, Le & Mao, Yiqi & Song, Wei-Li & Chen, Haosen, 2023. "Exploring particle-current collector contact damage in Li-ion battery using DEM-FEM scheme," Applied Energy, Elsevier, vol. 351(C).
    7. Simon Schwolow & Muhammad Ammad Raza Siddiqui & Philipp Bauer & Thomas Vietor, 2022. "Impact Tests and Computed Tomography Scans of Prismatic Battery Cells," Energies, MDPI, vol. 15(22), pages 1-20, November.
    8. Su, Laisuo & Choi, Paul & Nakamura, Nathan & Charalambous, Harry & Litster, Shawn & Ilavsky, Jan & Reeja-Jayan, B., 2021. "Multiscale operando X-ray investigations provide insights into electro-chemo-mechanical behavior of lithium intercalation cathodes," Applied Energy, Elsevier, vol. 299(C).
    9. Pan, Yongjun & Zhang, Xiaoxi & Liu, Yue & Wang, Huacui & Cao, Yangzheng & Liu, Xin & Liu, Binghe, 2022. "Dynamic behavior prediction of modules in crushing via FEA-DNN technique for durable battery-pack system design," Applied Energy, Elsevier, vol. 322(C).
    10. Damoon Soudbakhsh & Mehdi Gilaki & William Lynch & Peilin Zhang & Taeyoung Choi & Elham Sahraei, 2020. "Electrical Response of Mechanically Damaged Lithium-Ion Batteries," Energies, MDPI, vol. 13(17), pages 1-15, August.
    11. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    2. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    3. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    4. Minhwan Seo & Taedong Goh & Minjun Park & Sang Woo Kim, 2018. "Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell," Energies, MDPI, vol. 11(7), pages 1-18, June.
    5. Yang, Sheng & Wang, Wenwei & Lin, Cheng & Shen, Weixiang & Li, Yiding, 2019. "Improved constitutive model of the jellyroll for cylindrical lithium ion batteries considering microscopic damage," Energy, Elsevier, vol. 185(C), pages 202-212.
    6. Chen, Zeyu & Xiong, Rui & Tian, Jinpeng & Shang, Xiong & Lu, Jiahuan, 2016. "Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 365-374.
    7. Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
    8. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    9. Wenwei, Wang & Yiding, Li & Cheng, Lin & Yuefeng, Su & Sheng, Yang, 2019. "State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    11. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    12. Noelle, Daniel J. & Wang, Meng & Le, Anh V. & Shi, Yang & Qiao, Yu, 2018. "Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting," Applied Energy, Elsevier, vol. 212(C), pages 796-808.
    13. Qiao, Dongdong & Wang, Xueyuan & Lai, Xin & Zheng, Yuejiu & Wei, Xuezhe & Dai, Haifeng, 2022. "Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method," Energy, Elsevier, vol. 243(C).
    14. Sieg, Johannes & Schmid, Alexander U. & Rau, Laura & Gesterkamp, Andreas & Storch, Mathias & Spier, Bernd & Birke, Kai Peter & Sauer, Dirk Uwe, 2022. "Fast-charging capability of lithium-ion cells: Influence of electrode aging and electrolyte consumption," Applied Energy, Elsevier, vol. 305(C).
    15. Jian Yang & Jaewook Jung & Samira Ghorbanpour & Sekyung Han, 2022. "Data–Driven Fault Diagnosis and Cause Analysis of Battery Pack with Real Data," Energies, MDPI, vol. 15(5), pages 1-19, February.
    16. Yang, Qifan & Sun, Jinlei & Kang, Yongzhe & Ma, Hongzhong & Duan, Dawei, 2023. "Internal short circuit detection and evaluation in battery packs based on transformation matrix and an improved state-space model," Energy, Elsevier, vol. 276(C).
    17. Wei, Peng & Li, Han-Xiong, 2022. "Multiscale dynamic construction for abnormality detection and localization of Li-ion batteries," Applied Energy, Elsevier, vol. 325(C).
    18. Zhipeng Jiao & Jian Ma & Xuan Zhao & Kai Zhang & Dean Meng & Xuebo Li, 2022. "Development of a Rapid Inspection Driving Cycle for Battery Electric Vehicles Based on Operational Safety," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    19. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    20. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:224:y:2018:i:c:p:251-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.