IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v255y2019ics0306261919315053.html
   My bibliography  Save this article

State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: Capacity loss modeling and remaining useful life prediction

Author

Listed:
  • Zhang, Yongzhi
  • Xiong, Rui
  • He, Hongwen
  • Qu, Xiaobo
  • Pecht, Michael

Abstract

Capacity loss modeling is required for accurate and reliable lifetime evaluation of lithium-ion batteries. The current capacity loss model parameters cannot be identified online. To address this problem, this paper has developed a capacity loss model based on the aging mechanisms of solid electrolyte interface layer growth and active material loss. Experimental results show that capacity loss due to solid electrolyte interface growth is independent of state of charge ranges during cycling, whereas capacity loss due to active material loss depends on the state of charge ranges. A comprehensive aging model is thus developed, combined with the recursive least squares method to identify the model parameters in realtime. In our case studies, the estimation errors of the capacity loss model are within 1% under different state of charge ranges. To avoid the modeling error caused by cell characteristic inconsistencies, model parameters are further updated adaptively based on online data for predicting the accurate lifetime of the specific cell.

Suggested Citation

  • Zhang, Yongzhi & Xiong, Rui & He, Hongwen & Qu, Xiaobo & Pecht, Michael, 2019. "State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: Capacity loss modeling and remaining useful life prediction," Applied Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315053
    DOI: 10.1016/j.apenergy.2019.113818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919315053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yu & Ong, Ghim Ping & Meng, Qiang, 2023. "The road to electrification: Bus fleet replacement strategies," Applied Energy, Elsevier, vol. 337(C).
    2. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    3. He, Guannan & Ciez, Rebecca & Moutis, Panayiotis & Kar, Soummya & Whitacre, Jay F., 2020. "The economic end of life of electrochemical energy storage," Applied Energy, Elsevier, vol. 273(C).
    4. Fan, Chuanxin & O’Regan, Kieran & Li, Liuying & Higgins, Matthew D. & Kendrick, Emma & Widanage, Widanalage D., 2022. "Data-driven identification of lithium-ion batteries: A nonlinear equivalent circuit model with diffusion dynamics," Applied Energy, Elsevier, vol. 321(C).
    5. Song, Aoye & Zhou, Yuekuan, 2023. "A hierarchical control with thermal and electrical synergies on battery cycling ageing and energy flexibility in a multi-energy sharing network," Renewable Energy, Elsevier, vol. 212(C), pages 1020-1037.
    6. He, Ning & Wang, Qiqi & Lu, Zhenfeng & Chai, Yike & Yang, Fangfang, 2024. "Early prediction of battery lifetime based on graphical features and convolutional neural networks," Applied Energy, Elsevier, vol. 353(PA).
    7. García, Antonio & Pastor, José V. & Monsalve-Serrano, Javier & Golke, Diego, 2024. "Cell-to-cell dispersion impact on zero-dimensional models for predicting thermal runaway parameters of NCA and NMC811," Applied Energy, Elsevier, vol. 369(C).
    8. Shen, Yudong & Wang, Xueyuan & Jiang, Zhao & Luo, Bingyin & Chen, Daidai & Wei, Xuezhe & Dai, Haifeng, 2024. "Online detection of lithium plating onset during constant and multistage constant current fast charging for lithium-ion batteries," Applied Energy, Elsevier, vol. 370(C).
    9. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    10. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Zhang, Le & Wang, Shuaian & Qu, Xiaobo, 2021. "Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Tian, Jiaqiang & Xu, Ruilong & Wang, Yujie & Chen, Zonghai, 2021. "Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries," Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.