IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i1p198-211.html
   My bibliography  Save this article

Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm

Author

Listed:
  • Ma, Zhenjun
  • Wang, Shengwei

Abstract

This paper presents a model-based supervisory and optimal control strategy for central chiller plants to enhance their energy efficiency and control performance. The optimal strategy is formulated using simplified models of major components and the genetic algorithm (GA). The simplified models are used as the performance predictors to estimate the system energy performance and response to the changes of control settings and working conditions. Since the accuracy of the models has significant impacts on the overall prediction results, the models used are linear in the parameters and the recursive least squares (RLS) estimation technique with exponential forgetting is used to identify and update the model parameters online. That is to ensure that the linear models can provide reliable and accurate estimates when working condition changes. The GA, as a global optimization tool, is used to solve the optimization problem and search for globally optimal control settings. The performance of this strategy is tested and evaluated in a simulated virtual system representing the actual central chiller plant in a super high-rise building under various working conditions. The results showed that this strategy can save about 0.73-2.55% daily energy of the system studied, as compared to a reference strategy using conventional settings.

Suggested Citation

  • Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:1:p:198-211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00306-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fong, K.F. & Yuen, S.Y. & Chow, C.K. & Leung, S.W., 2010. "Energy management and design of centralized air-conditioning systems through the non-revisiting strategy for heuristic optimization methods," Applied Energy, Elsevier, vol. 87(11), pages 3494-3506, November.
    2. Kusiak, Andrew & Li, Mingyang, 2010. "Cooling output optimization of an air handling unit," Applied Energy, Elsevier, vol. 87(3), pages 901-909, March.
    3. Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
    4. Ma, Zhenjun & Wang, Shengwei & Xiao, Fu, 2009. "Online performance evaluation of alternative control strategies for building cooling water systems prior to in situ implementation," Applied Energy, Elsevier, vol. 86(5), pages 712-721, May.
    5. Yu, F.W. & Chan, K.T., 2008. "Optimization of water-cooled chiller system with load-based speed control," Applied Energy, Elsevier, vol. 85(10), pages 931-950, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tirmizi, Syed A. & Gandhidasan, P. & Zubair, Syed M., 2012. "Performance analysis of a chilled water system with various pumping schemes," Applied Energy, Elsevier, vol. 100(C), pages 238-248.
    2. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    3. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    4. Liu, Xue-feng & Liu, Jin-ping & Lu, Ji-dong & Liu, Lei & Zou, Wei, 2012. "Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference," Energy, Elsevier, vol. 40(1), pages 236-249.
    5. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    6. Gao, Dian-ce & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2012. "Diagnosis of the low temperature difference syndrome in the chilled water system of a super high-rise building: A case study," Applied Energy, Elsevier, vol. 98(C), pages 597-606.
    7. Wang, Yi-Fei & Chen, Qun, 2015. "A direct optimal control strategy of variable speed pumps in heat exchanger networks and experimental validations," Energy, Elsevier, vol. 85(C), pages 609-619.
    8. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    9. Tejeda De La Cruz, Alberto & Riviere, Philippe & Marchio, Dominique & Cauret, Odile & Milu, Anamaria, 2017. "Hardware in the loop test bench using Modelica: A platform to test and improve the control of heating systems," Applied Energy, Elsevier, vol. 188(C), pages 107-120.
    10. Catrini, Pietro & La Villetta, M. & Kumar, Dhirendran Munith & Morale, Massimo & Piacentino, Antonio, 2024. "Analysis of the operation of air-cooled chillers with variable-speed fans for advanced energy-saving-oriented control strategies," Applied Energy, Elsevier, vol. 367(C).
    11. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    12. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    13. Wei, Xiupeng & Kusiak, Andrew & Li, Mingyang & Tang, Fan & Zeng, Yaohui, 2015. "Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance," Energy, Elsevier, vol. 83(C), pages 294-306.
    14. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    15. Qinli Deng & Liangxin Xu & Tingfang Zhao & Xuexin Hong & Xiaofang Shan & Zhigang Ren, 2022. "Cooperative Optimization of A Refrigeration System with A Water-Cooled Chiller and Air-Cooled Heat Pump by Coupling BPNN and PSO," Energies, MDPI, vol. 15(19), pages 1-19, September.
    16. Hinkelman, Kathryn & Wang, Jing & Zuo, Wangda & Gautier, Antoine & Wetter, Michael & Fan, Chengliang & Long, Nicholas, 2022. "Modelica-based modeling and simulation of district cooling systems: A case study," Applied Energy, Elsevier, vol. 311(C).
    17. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    18. Deng, Na & Cai, Rongchang & Gao, Yuan & Zhou, Zhihua & He, Guansong & Liu, Dongyi & Zhang, Awen, 2017. "A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin," Energy, Elsevier, vol. 141(C), pages 1750-1763.
    19. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    20. Li, Ning & Xia, Liang & Shiming, Deng & Xu, Xiangguo & Chan, Ming-Yin, 2012. "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural network," Applied Energy, Elsevier, vol. 91(1), pages 290-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:1:p:198-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.