IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p96-d1010350.html
   My bibliography  Save this article

Active Optimization of Chilled Water Pump Running Number: Engineering Practice Validation

Author

Listed:
  • Shunian Qiu

    (School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China)

  • Zhenhai Li

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Delong Wang

    (Shanghai Discovery Energy Services Co., Ltd., Shanghai 201108, China)

  • Zhengwei Li

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Yinying Tao

    (School of Design and Fashion, Zhejiang University of Science and Technology, Hangzhou 310023, China)

Abstract

To realize building energy conservation, appropriate operation of building energy systems is necessary. A chilled water pump, an essential component for chilled water transportation in building cooling systems, consumes substantial energy. Hence, its operation should be optimized. Previous studies on optimal pump control mostly focused on pump speed/frequency control, while the control of pump running number is usually too passive to realize energy-saving objectives. Moreover, existing relevant studies have some disadvantages, such as (1) too complex a workflow for maintenance; (2) dependence on accurate system performance models that take substantial data and labor to establish; and (3) high requirements on monitoring and sensors. To tackle those problems, this article proposes a simple, feasible approach to optimize the running number (on/off status) of chilled water pumps for building energy conservation. The proposed method is merely based on similarity/affinity laws and pump performance curves feasible for engineering practices. It has been implemented on a real cooling system in a battery factory. Our results suggest that: (1) based on similarity/affinity laws and pump performance curves, the estimation of potential targeted pump working points is accurate enough for optimal control (the flow rate estimation error is less than 2%, the frequency estimation error is less than 1 Hz); (2) the energy-saving effect of this control method is evident (20% of pump energy is saved by the proposed method compared to the former control logic); (3) the water grid operation condition is maintained well: cooling supply is not sacrificed by the control intervention (compared to the working condition before the intervention, grid pressure difference changed by 1.4%, flow rate changed by 2.6%). Regarding the low preconditions, simple workflow, and acceptable energy-saving performance of the proposed method, it is suitable for energy conservation in building cooling systems.

Suggested Citation

  • Shunian Qiu & Zhenhai Li & Delong Wang & Zhengwei Li & Yinying Tao, 2022. "Active Optimization of Chilled Water Pump Running Number: Engineering Practice Validation," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:96-:d:1010350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/96/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/96/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trautman, Neal & Razban, Ali & Chen, Jie, 2021. "Overall chilled water system energy consumption modeling and optimization," Applied Energy, Elsevier, vol. 299(C).
    2. Liu, Xue-feng & Liu, Jin-ping & Lu, Ji-dong & Liu, Lei & Zou, Wei, 2012. "Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference," Energy, Elsevier, vol. 40(1), pages 236-249.
    3. Gao, Dian-ce & Wang, Shengwei & Shan, Kui & Yan, Chengchu, 2016. "A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems," Applied Energy, Elsevier, vol. 164(C), pages 1028-1038.
    4. Li, Weilin & Xu, Peng & Lu, Xing & Wang, Huilong & Pang, Zhihong, 2016. "Electricity demand response in China: Status, feasible market schemes and pilots," Energy, Elsevier, vol. 114(C), pages 981-994.
    5. Gao, Dian-ce & Wang, Shengwei & Shan, Kui, 2016. "In-situ implementation and evaluation of an online robust pump speed control strategy for avoiding low delta-T syndrome in complex chilled water systems of high-rise buildings," Applied Energy, Elsevier, vol. 171(C), pages 541-554.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jangsten, Maria & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2022. "District cooling substation design and control to achieve high return temperatures," Energy, Elsevier, vol. 251(C).
    2. Ju-wan Ha & Yu-jin Kim & Kyung-soon Park & Young-hak Song, 2022. "Energy Saving Evaluation with Low Liquid to Gas Ratio Operation in HVAC&R System," Energies, MDPI, vol. 15(19), pages 1-29, October.
    3. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    4. Edwards, K.C. & Finn, D.P., 2015. "Generalised water flow rate control strategy for optimal part load operation of ground source heat pump systems," Applied Energy, Elsevier, vol. 150(C), pages 50-60.
    5. Yajing Gao & Xiaojie Zhou & Jiafeng Ren & Zheng Zhao & Fushen Xue, 2018. "Electricity Purchase Optimization Decision Based on Data Mining and Bayesian Game," Energies, MDPI, vol. 11(5), pages 1-19, April.
    6. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    7. Catrini, Pietro & La Villetta, M. & Kumar, Dhirendran Munith & Morale, Massimo & Piacentino, Antonio, 2024. "Analysis of the operation of air-cooled chillers with variable-speed fans for advanced energy-saving-oriented control strategies," Applied Energy, Elsevier, vol. 367(C).
    8. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    9. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    10. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    11. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    12. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & You, Shijun, 2024. "Pump-stopping-induced hydraulic oscillations in long-distance district heating system: Modelling and a comprehensive analysis of critical factors," Energy, Elsevier, vol. 294(C).
    13. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    14. Liu, Xuefeng & Xu, Jinman & Bi, Mengbo & Ma, Wenjing & Chen, Wencong & Zheng, Minglong, 2024. "Multivariate coupled full-case physical model of large chilled water systems and its application," Energy, Elsevier, vol. 298(C).
    15. Gao, Dian-ce & Wang, Shengwei & Shan, Kui, 2016. "In-situ implementation and evaluation of an online robust pump speed control strategy for avoiding low delta-T syndrome in complex chilled water systems of high-rise buildings," Applied Energy, Elsevier, vol. 171(C), pages 541-554.
    16. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    17. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    19. Wang, Huilong & Wang, Shengwei & Tang, Rui, 2019. "Development of grid-responsive buildings: Opportunities, challenges, capabilities and applications of HVAC systems in non-residential buildings in providing ancillary services by fast demand responses," Applied Energy, Elsevier, vol. 250(C), pages 697-712.
    20. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:96-:d:1010350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.