IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007311.html
   My bibliography  Save this article

Fast-apply deep autoregressive recurrent proximal policy optimization for controlling hot water systems

Author

Listed:
  • Yin, Linfei
  • Xiong, Yi

Abstract

With the development of artificial intelligence technology, various intelligent algorithms are applied in building energy system optimization. Deep reinforcement learning (DRL) algorithms have garnered substantial attention from researchers. However, all current DRL-based control methods suffer from two problems. The first problem is that current DRL-based methods require an offline training process and therefore cannot be directly applied to houses. The offline training not only increases the waiting process for occupants but also creates the risk of degrading the occupant experience. The second problem is that current DRL-based methods do not continuously learn online. As a result of the second problem, the control methods are unable to consistently execute the optimal policy in the face of changing hot water demand habits. In this study, a fast-apply deep autoregressive recurrent proximal policy optimization (FDPPO) for controlling hot water systems is proposed. In practical systems, the FDPPO can be applied directly to houses without the need for occupants to wait. The proposed FDPPO can adapt to hot water demands that change over time through continuous online learning. In addition, the proposed FDPPO that applies the model-free reinforcement learning approach does not require modeling complex water heater models. The proposed FDPPO is evaluated by actual hot water demand data of over 55 weeks collected from two typical houses. The results show that the proposed FDPPO can save between 41.24% and 59.01% of energy consumption, all the while ensuring occupant comfort and safeguarding water hygiene.

Suggested Citation

  • Yin, Linfei & Xiong, Yi, 2024. "Fast-apply deep autoregressive recurrent proximal policy optimization for controlling hot water systems," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007311
    DOI: 10.1016/j.apenergy.2024.123348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
    2. Kazmi, Hussain & Mehmood, Fahad & Lodeweyckx, Stefan & Driesen, Johan, 2018. "Gigawatt-hour scale savings on a budget of zero: Deep reinforcement learning based optimal control of hot water systems," Energy, Elsevier, vol. 144(C), pages 159-168.
    3. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    4. Kim, Dongwoo & Yim, Taesu & Lee, Jae Yong, 2021. "Analytical study on changes in domestic hot water use caused by COVID-19 pandemic," Energy, Elsevier, vol. 231(C).
    5. Armstrong, Peter M. & Uapipatanakul, Meg & Thompson, Ian & Ager, Duane & McCulloch, Malcolm, 2014. "Thermal and sanitary performance of domestic hot water cylinders: Conflicting requirements," Applied Energy, Elsevier, vol. 131(C), pages 171-179.
    6. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "An occupant-centric control framework for balancing comfort, energy use and hygiene in hot water systems: A model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 312(C).
    7. Coraci, Davide & Brandi, Silvio & Hong, Tianzhen & Capozzoli, Alfonso, 2023. "Online transfer learning strategy for enhancing the scalability and deployment of deep reinforcement learning control in smart buildings," Applied Energy, Elsevier, vol. 333(C).
    8. Yu Qian Ang & Zachary Michael Berzolla & Samuel Letellier-Duchesne & Christoph F. Reinhart, 2023. "Carbon reduction technology pathways for existing buildings in eight cities," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Chen, Jianli & Adhikari, Rajendra & Wilson, Eric & Robertson, Joseph & Fontanini, Anthony & Polly, Ben & Olawale, Opeoluwa, 2022. "Stochastic simulation of occupant-driven energy use in a bottom-up residential building stock model," Applied Energy, Elsevier, vol. 325(C).
    10. Allik, Alo & Märss, Maido & Uiga, Jaanus & Annuk, Andres, 2016. "Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving," Renewable Energy, Elsevier, vol. 99(C), pages 1116-1125.
    11. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "Reinforcement Learning for proactive operation of residential energy systems by learning stochastic occupant behavior and fluctuating solar energy: Balancing comfort, hygiene and energy use," Applied Energy, Elsevier, vol. 318(C).
    2. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "An occupant-centric control framework for balancing comfort, energy use and hygiene in hot water systems: A model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 312(C).
    3. Ibrahim Ali Kachalla & Christian Ghiaus, 2024. "Electric Water Boiler Energy Prediction: State-of-the-Art Review of Influencing Factors, Techniques, and Future Directions," Energies, MDPI, vol. 17(2), pages 1-32, January.
    4. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    5. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    6. Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
    7. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    8. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    9. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    10. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    11. Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
    12. Tomasz Wołowiec & Iuliia Myroshnychenko & Ihor Vakulenko & Sylwester Bogacki & Anna Maria Wiśniewska & Svitlana Kolosok & Vitaliy Yunger, 2022. "International Impact of COVID-19 on Energy Economics and Environmental Pollution: A Scoping Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    13. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    14. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    15. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    16. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    17. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    18. Kandaswamy Paramasivan & Brinda Subramani & Nandan Sudarsanam, 2022. "Counterfactual analysis of the impact of the first two waves of the COVID-19 pandemic on the reporting and registration of missing people in India," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    19. Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
    20. Jiang, Yan & Zhang, Huan & Wang, Yeming & Wang, Yaran & Liu, Minzhang & You, Shijun & Wu, Zhangxiang & Fan, Man & Wei, Shen, 2022. "Research on the operation strategies of the solar assisted heat pump with triangular solar air collector," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.