IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v131y2014icp171-179.html
   My bibliography  Save this article

Thermal and sanitary performance of domestic hot water cylinders: Conflicting requirements

Author

Listed:
  • Armstrong, Peter M.
  • Uapipatanakul, Meg
  • Thompson, Ian
  • Ager, Duane
  • McCulloch, Malcolm

Abstract

In order to understand the sanitary implications around the demand side management of domestic hot water cylinders, microbial samples were taken from the bottom of 10 UK domestic electric hot water tanks whose heating elements are connected to a controlled off-peak supply. The results indicated high concentrations of bacteria in the water and biofilm. Microbial concentrations remained high in spite of the application of seven hours of heating during off-peak hours. Further numerical and experimental work shows that this problem arises due to the differing modes of heat transfer that prevail above and below the immersion element. The results from thermal and bacterial growth models suggest that it is impossible to achieve sanitary conditions throughout standard domestic hot water tanks without significantly increasing the heating element temperature or lowering the heating element from its current position. Raising the immersion thermostat temperature results in additional heat losses whilst lowering the immersion position compromises thermal stratification leading to uneconomical operation. Guidelines around storing hot water at temperatures that are sufficient for the purposes of sterilizing human pathogens such as Legionella, fail to take account of the conflict between thermal and sanitary performance. By better understanding the distribution of temperatures and bacteria within hot water tanks along with the associated risks, improved design and control strategies may be adopted to facilitate effective demand side management of hot water systems whilst meeting sanitary requirements.

Suggested Citation

  • Armstrong, Peter M. & Uapipatanakul, Meg & Thompson, Ian & Ager, Duane & McCulloch, Malcolm, 2014. "Thermal and sanitary performance of domestic hot water cylinders: Conflicting requirements," Applied Energy, Elsevier, vol. 131(C), pages 171-179.
  • Handle: RePEc:eee:appene:v:131:y:2014:i:c:p:171-179
    DOI: 10.1016/j.apenergy.2014.06.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.06.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Domestic hot water storage: Balancing thermal and sanitary performance," Energy Policy, Elsevier, vol. 68(C), pages 334-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael J. Ritchie & Jacobus A.A. Engelbrecht & Marthinus J. Booysen, 2021. "Practically-Achievable Energy Savings with the Optimal Control of Stratified Water Heaters with Predicted Usage," Energies, MDPI, vol. 14(7), pages 1-23, April.
    2. Ángel Á. Pardiñas & Pablo Durán Gómez & Fernando Echevarría Camarero & Pablo Carrasco Ortega, 2023. "Demand–Response Control of Electric Storage Water Heaters Based on Dynamic Electricity Pricing and Comfort Optimization," Energies, MDPI, vol. 16(10), pages 1-25, May.
    3. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "An occupant-centric control framework for balancing comfort, energy use and hygiene in hot water systems: A model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 312(C).
    4. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Improving the energy storage capability of hot water tanks through wall material specification," Energy, Elsevier, vol. 78(C), pages 128-140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pieter D. van Schalkwyk & Jacobus A. A. Engelbrecht & Marthinus J. Booysen, 2022. "Thermal Stratification and Temperature Variation in Horizontal Electric Water Heaters: A Characterisation Platform," Energies, MDPI, vol. 15(8), pages 1-20, April.
    2. Ximo Masip & Emilio Navarro-Peris & José M. Corberán, 2020. "Influence of the Thermal Energy Storage Strategy on the Performance of a Booster Heat Pump for Domestic Hot Water Production System Based on the Use of Low Temperature Heat Source," Energies, MDPI, vol. 13(24), pages 1-24, December.
    3. Naghavi, M.S. & Ong, K.S. & Badruddin, I.A. & Mehrali, M. & Silakhori, M. & Metselaar, H.S.C., 2015. "Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material," Energy, Elsevier, vol. 91(C), pages 911-924.
    4. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Improving the energy storage capability of hot water tanks through wall material specification," Energy, Elsevier, vol. 78(C), pages 128-140.
    5. Mohammad Sajad Naghavi Sanjani & Mahyar Silakhori & Bee Chin Ang & Hendrik Simon Cornelis Metselaar & Sayed Mohammad Mousavi Gazafroudi & Younes Noorollahi, 2023. "Experimental Investigation on Solar Water Heater Integrated with Thermal Battery Using Phase Change Material and Porous Media," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    6. Naghavi, M.S. & Metselaar, H.S.C. & Ang, B.C. & Zamiri, G. & Esmailzadeh, A. & Nasiri-Tabrizi, B., 2021. "A critical assessment on synergistic improvement in PCM based thermal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:131:y:2014:i:c:p:171-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.