IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021986.html
   My bibliography  Save this article

A trustworthy reinforcement learning framework for autonomous control of a large-scale complex heating system: Simulation and field implementation

Author

Listed:
  • Heidari, Amirreza
  • Girardin, Luc
  • Dorsaz, Cédric
  • Maréchal, François

Abstract

Traditional control approaches heavily rely on hard-coded expert knowledge, complicating the development of optimal control solutions as system complexity increases. Deep Reinforcement Learning (DRL) offers a self-learning control solution, proving advantageous in scenarios where crafting expert-based solutions becomes intricate. This study investigates the potential of DRL for supervisory control in a unique and complex heating system within a large-scale university building. The DRL framework aims to minimize energy costs while ensuring occupant comfort. However, the trial-and-error learning approach of DRL raises concerns about the trustworthiness of executed actions, hindering practical implementation. To address this, the study incorporates action masking, enabling the integration of hard constraints into DRL to enhance user trust. Maskable Proximal Policy Optimization (MPPO) is evaluated alongside standard Proximal Policy Optimization (PPO) and Soft Actor–Critic (SAC). Simulation results reveal that MPPO achieves comparable energy savings (8% relative to the baseline control) with fewer comfort violations than other methods. Therefore, it is selected among the candidate algorithms and experimentally implemented in the university building over one week. Experimental findings demonstrate that MPPO reduces energy costs while maintaining occupant comfort, resulting in a 36% saving compared to a historical day with similar weather conditions. These results underscore the proactive decision-making capability of DRL, establishing its viability for autonomous control in complex energy systems.

Suggested Citation

  • Heidari, Amirreza & Girardin, Luc & Dorsaz, Cédric & Maréchal, François, 2025. "A trustworthy reinforcement learning framework for autonomous control of a large-scale complex heating system: Simulation and field implementation," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021986
    DOI: 10.1016/j.apenergy.2024.124815
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.