IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v9y2022i1d10.1057_s41599-022-01426-8.html
   My bibliography  Save this article

Counterfactual analysis of the impact of the first two waves of the COVID-19 pandemic on the reporting and registration of missing people in India

Author

Listed:
  • Kandaswamy Paramasivan

    (Government of Tamil Nadu)

  • Brinda Subramani

    (Government of Tamil Nadu)

  • Nandan Sudarsanam

    (Indian Institute of Technology, Madras
    Indian Institute of Technology, Madras)

Abstract

The primary duty of law enforcement agencies is to ensure that a victim has the necessary information and access to the relevant tools required to seek justice. In India, complex cases such as bodily offences and property crimes capture the work and efforts of many agencies involved; however, cases related to missing persons are not often accorded similar priority or seriousness. The COVID-19 pandemic and subsequent lockdowns have added further challenges to this scenario. The government-mandated lockdowns in Tamil Nadu generally exacerbated difficult socio-economic and living conditions, thereby directly or indirectly contributing to an increased load of missing person cases. This study aims to assess and identify the impact of mobility on reporting and registration of missing persons. By adopting an auto-regressive neural networks method, this study uses a counterfactual analysis of registered missing person cases during the government-mandated lockdowns in response to the global pandemic in 2020 and 2021. The registered cases are calculated based on the daily count of cases for eleven years in Tamil Nadu, India. The lockdowns identify eight different time windows to determine the impact of mobility on the registration of cases. While there has been no significant or drastic change over the pre-pandemic period, during the pandemic, especially during the restrictive phases of the pandemic, there was a sharp fall in cases compared to the counterfactual predicted (effect sizes: −0.981 and −0.74 in 2020 and 2021), signalling towards a choked mechanism of reporting. In contrast, when most mobility restrictions were removed, an increase in cases (effect sizes of +0.931 and 0.834 in 2020 and 2021) pointed to restored and enabled reporting channels. The research findings emphasise the significance of mobility as a factor in influencing the reporting and registration of missing persons and the need to ensure this continues to help families find redress.

Suggested Citation

  • Kandaswamy Paramasivan & Brinda Subramani & Nandan Sudarsanam, 2022. "Counterfactual analysis of the impact of the first two waves of the COVID-19 pandemic on the reporting and registration of missing people in India," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01426-8
    DOI: 10.1057/s41599-022-01426-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-022-01426-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-022-01426-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    2. Kandaswamy Paramasivan & Rahul Subburaj & Saish Jaiswal & Nandan Sudarsanam, 2022. "Empirical evidence of the impact of mobility on property crimes during the first two waves of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    3. Joshy Jesline & John Romate & Eslavath Rajkumar & Allen Joshua George, 2021. "The plight of migrants during COVID-19 and the impact of circular migration in India: a systematic review," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
    3. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    4. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    5. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    6. Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
    7. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    8. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    9. Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
    10. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    11. Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
    12. Arora, Varun & Chakravarty, Sujoy & Kapoor, Hansika & Mukherjee, Shagata & Roy, Shubhabrata & Tagat, Anirudh, 2023. "No going back: COVID-19 disease threat perception and male migrants' willingness to return to work in India," Journal of Economic Behavior & Organization, Elsevier, vol. 209(C), pages 533-546.
    13. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    14. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    15. Fatemeh Hamedanian, 2022. "Access to the European Labor Market for Immigrant Women in the Wake of the COVID Pandemic," World, MDPI, vol. 3(4), pages 1-22, November.
    16. Pengfei Zhao & Haoren Zhu & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "From GARCH to Neural Network for Volatility Forecast," Papers 2402.06642, arXiv.org.
    17. Li, Xixi & Yuan, Jingsong, 2024. "DeepTVAR: Deep learning for a time-varying VAR model with extension to integrated VAR," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1123-1133.
    18. Zhen Zeng & Rachneet Kaur & Suchetha Siddagangappa & Saba Rahimi & Tucker Balch & Manuela Veloso, 2023. "Financial Time Series Forecasting using CNN and Transformer," Papers 2304.04912, arXiv.org.
    19. Chaokai Huang & Ning Du & Jiahan He & Na Li & Yifan Feng & Weihong Cai, 2023. "Multidimensional Feature-Based Graph Attention Networks and Dynamic Learning for Electricity Load Forecasting," Energies, MDPI, vol. 16(18), pages 1-17, September.
    20. Montero-Manso, Pablo & Hyndman, Rob J., 2021. "Principles and algorithms for forecasting groups of time series: Locality and globality," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:9:y:2022:i:1:d:10.1057_s41599-022-01426-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.