IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9012543.html
   My bibliography  Save this article

Monthly Electricity Consumption Forecasting Method Based on X12 and STL Decomposition Model in an Integrated Energy System

Author

Listed:
  • Tianhe Sun
  • Tieyan Zhang
  • Yun Teng
  • Zhe Chen
  • Jiakun Fang

Abstract

With the rapid development and wide application of distributed generation technology and new energy trading methods, the integrated energy system has developed rapidly in Europe in recent years and has become the focus of new strategic competition and cooperation among countries. As a key technology and decision-making approach for operation, optimization, and control of integrated energy systems, power consumption prediction faces new challenges. The user-side power demand and load characteristics change due to the influence of distributed energy. At the same time, in the open retail market of electricity sales, the forecast of electricity consumption faces the power demand of small-scale users, which is more easily disturbed by random factors than by a traditional load forecast. Therefore, this study proposes a model based on X12 and Seasonal and Trend decomposition using Loess (STL) decomposition of monthly electricity consumption forecasting methods. The first use of the STL model according to the properties of electricity each month is its power consumption time series decomposition individuation. It influences the factorization of monthly electricity consumption into season, trend, and random components. Then, the change in the characteristics of the three components over time is considered. Finally, the appropriate model is selected to predict the components in the reconfiguration of the monthly electricity consumption forecast. A forecasting program is developed based on R language and MATLAB, and a case study is conducted on the power consumption data of a university campus containing distributed energy. Results show that the proposed method is reasonable and effective.

Suggested Citation

  • Tianhe Sun & Tieyan Zhang & Yun Teng & Zhe Chen & Jiakun Fang, 2019. "Monthly Electricity Consumption Forecasting Method Based on X12 and STL Decomposition Model in an Integrated Energy System," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-16, October.
  • Handle: RePEc:hin:jnlmpe:9012543
    DOI: 10.1155/2019/9012543
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9012543.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9012543.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9012543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    2. Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).
    3. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    4. Stover, Oliver & Nath, Paromita & Karve, Pranav & Mahadevan, Sankaran & Baroud, Hiba, 2024. "Dependence structure learning and joint probabilistic forecasting of stochastic power grid variables," Applied Energy, Elsevier, vol. 357(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9012543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.