IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0196816.html
   My bibliography  Save this article

A VVWBO-BVO-based GM (1,1) and its parameter optimization by GRA-IGSA integration algorithm for annual power load forecasting

Author

Listed:
  • Lianhui Li
  • Hongguang Wang

Abstract

Annual power load forecasting is not only the premise of formulating reasonable macro power planning, but also an important guarantee for the safety and economic operation of power system. In view of the characteristics of annual power load forecasting, the grey model of GM (1,1) are widely applied. Introducing buffer operator into GM (1,1) to pre-process the historical annual power load data is an approach to improve the forecasting accuracy. To solve the problem of nonadjustable action intensity of traditional weakening buffer operator, variable-weight weakening buffer operator (VWWBO) and background value optimization (BVO) are used to dynamically pre-process the historical annual power load data and a VWWBO-BVO-based GM (1,1) is proposed. To find the optimal value of variable-weight buffer coefficient and background value weight generating coefficient of the proposed model, grey relational analysis (GRA) and improved gravitational search algorithm (IGSA) are integrated and a GRA-IGSA integration algorithm is constructed aiming to maximize the grey relativity between simulating value sequence and actual value sequence. By the adjustable action intensity of buffer operator, the proposed model optimized by GRA-IGSA integration algorithm can obtain a better forecasting accuracy which is demonstrated by the case studies and can provide an optimized solution for annual power load forecasting.

Suggested Citation

  • Lianhui Li & Hongguang Wang, 2018. "A VVWBO-BVO-based GM (1,1) and its parameter optimization by GRA-IGSA integration algorithm for annual power load forecasting," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
  • Handle: RePEc:plo:pone00:0196816
    DOI: 10.1371/journal.pone.0196816
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196816
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0196816&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0196816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ömer Özgür Bozkurt & Göksel Biricik & Ziya Cihan Tayşi, 2017. "Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melillo, Andreas & Durrer, Roman & Worlitschek, Jörg & Schütz, Philipp, 2020. "First results of remote building characterisation based on smart meter measurement data," Energy, Elsevier, vol. 200(C).
    2. Tan, Mao & Liao, Chengchen & Chen, Jie & Cao, Yijia & Wang, Rui & Su, Yongxin, 2023. "A multi-task learning method for multi-energy load forecasting based on synthesis correlation analysis and load participation factor," Applied Energy, Elsevier, vol. 343(C).
    3. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    4. Li, Kang & Duan, Pengfei & Cao, Xiaodong & Cheng, Yuanda & Zhao, Bingxu & Xue, Qingwen & Feng, Mengdan, 2024. "A multi-energy load forecasting method based on complementary ensemble empirical model decomposition and composite evaluation factor reconstruction," Applied Energy, Elsevier, vol. 365(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nyoni, Thabani, 2019. "Modeling and forecasting demand for electricity in Zimbabwe using the Box-Jenkins ARIMA technique," MPRA Paper 96903, University Library of Munich, Germany.
    2. Samer Chaaraoui & Matthias Bebber & Stefanie Meilinger & Silvan Rummeny & Thorsten Schneiders & Windmanagda Sawadogo & Harald Kunstmann, 2021. "Day-Ahead Electric Load Forecast for a Ghanaian Health Facility Using Different Algorithms," Energies, MDPI, vol. 14(2), pages 1-22, January.
    3. Davut Solyali, 2020. "A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus," Sustainability, MDPI, vol. 12(9), pages 1-34, April.
    4. Cabral, Joilson de Assis & Freitas Cabral, Maria Viviana de & Pereira Júnior, Amaro Olímpio, 2020. "Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil," Utilities Policy, Elsevier, vol. 66(C).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Siti Aisyah & Arionmaro Asi Simaremare & Didit Adytia & Indra A. Aditya & Andry Alamsyah, 2022. "Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia," Energies, MDPI, vol. 15(10), pages 1-17, May.
    7. Damilola Elizabeth Babatunde & Ambrose Anozie & James Omoleye, 2020. "Artificial Neural Network and its Applications in the Energy Sector An Overview," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 250-264.
    8. Gulay, Emrah & Duru, Okan, 2020. "Hybrid modeling in the predictive analytics of energy systems and prices," Applied Energy, Elsevier, vol. 268(C).
    9. Jun-Lin Lin & Yiqing Zhang & Kunhuang Zhu & Binbin Chen & Feng Zhang, 2020. "Asymmetric Loss Functions for Contract Capacity Optimization," Energies, MDPI, vol. 13(12), pages 1-13, June.
    10. E. V. Balatskii & N. A. Ekimova & M. A. Yurevich, 2019. "Short-Term Inflation Projection Based on Marker Models," Studies on Russian Economic Development, Springer, vol. 30(5), pages 498-506, September.
    11. Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
    12. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0196816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.