IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924012546.html
   My bibliography  Save this article

Physically rational data augmentation for energy consumption estimation of electric vehicles

Author

Listed:
  • Ma, Yifan
  • Sun, Wei
  • Zhao, Zhoulun
  • Gu, Leqi
  • Zhang, Hui
  • Jin, Yucheng
  • Yuan, Xinmei

Abstract

With the surge of electric vehicles, accurate estimation of their energy consumption becomes increasingly critical. Data-driven models have been widely used for estimating the energy consumption of electric vehicles; however, their applications often face limitations due to inadequate training data, resulting in over-fitting and poor generalizability. In this paper, a physically rational data augmentation approach is proposed to expand the driving trip dataset. By incorporating physical coherence into the augmentation process, new driving trips are synthesized with rational physical context. The effectiveness of the proposed approach is validated by applying it to three data-driven models for estimating the energy consumption of electric vehicles across different validation scenarios. Compared with two baseline data augmentation approaches, our proposed approach demonstrates superior model training performance with less data synthesized. In the best case, the proposed approach achieved a 34% accuracy improvement over the raw data and an 11% improvement over the best-performing baseline. This proposed approach shows considerable promise in facilitating the effective adoption of advanced machine learning algorithms in industrial applications by significantly reducing the data collection requirements.

Suggested Citation

  • Ma, Yifan & Sun, Wei & Zhao, Zhoulun & Gu, Leqi & Zhang, Hui & Jin, Yucheng & Yuan, Xinmei, 2024. "Physically rational data augmentation for energy consumption estimation of electric vehicles," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012546
    DOI: 10.1016/j.apenergy.2024.123871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924012546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yang & Zhang, Meng & Chen, Chen, 2022. "A Deep-Learning intelligent system incorporating data augmentation for Short-Term voltage stability assessment of power systems," Applied Energy, Elsevier, vol. 308(C).
    2. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    3. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    4. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    5. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    6. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    7. Brian Kenji Iwana & Seiichi Uchida, 2021. "An empirical survey of data augmentation for time series classification with neural networks," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    8. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    2. Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
    3. Klemen Deželak & Klemen Sredenšek & Sebastijan Seme, 2023. "Energy Consumption and Grid Interaction Analysis of Electric Vehicles Based on Particle Swarm Optimisation Method," Energies, MDPI, vol. 16(14), pages 1-15, July.
    4. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    5. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
    6. Fu, Zhengtang & Dong, Peiwu & Ju, Yanbing & Gan, Zhenkun & Zhu, Min, 2022. "An intelligent green vehicle management system for urban food reliably delivery:A case study of Shanghai, China," Energy, Elsevier, vol. 257(C).
    7. Jin, Yue & Yang, Lin & Du, Mao & Qiang, Jiaxi & Li, Jingzhong & Chen, Yuxuan & Tu, Jiayu, 2023. "Two-scale based energy management for connected plug-in hybrid electric vehicles with global optimal energy consumption and state-of-charge trajectory prediction," Energy, Elsevier, vol. 267(C).
    8. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).
    9. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2022. "Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle," Energy, Elsevier, vol. 238(PC).
    10. Hariharan, C. & Gunadevan, D. & Arun Prakash, S. & Latha, K. & Antony Aroul Raj, V. & Velraj, R., 2022. "Simulation of battery energy consumption in an electric car with traction and HVAC model for a given source and destination for reducing the range anxiety of the driver," Energy, Elsevier, vol. 249(C).
    11. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    12. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    13. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
    14. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    15. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    16. Wen, Wen & Zhou, P. & Zhang, Fuqiang, 2018. "Carbon emissions abatement: Emissions trading vs consumer awareness," Energy Economics, Elsevier, vol. 76(C), pages 34-47.
    17. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    18. Dimitrios Loukatos & Vasileios Arapostathis & Christos-Spyridon Karavas & Konstantinos G. Arvanitis & George Papadakis, 2024. "Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios," Energies, MDPI, vol. 17(5), pages 1-24, March.
    19. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    20. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating provincial CO2 quotas for the Chinese national carbon program," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 457-479, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.