IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics036054422401034x.html
   My bibliography  Save this article

Dynamic aggregation strategy for a virtual power plant to improve flexible regulation ability

Author

Listed:
  • Liu, Xin
  • Li, Yang
  • Wang, Li
  • Tang, Junbo
  • Qiu, Haifeng
  • Berizzi, Alberto
  • Valentin, Ilea
  • Gao, Ciwei

Abstract

The virtual power plant (VPP) provides an effective way for the coordinated and optimized operation of distributed energy resources (DERs). To solve the aggregation problem of a VPP containing scattered layouts and heterogeneous performance DERs, this study proposes a dynamic aggregation strategy to improve the flexible regulation ability of the VPP. A VPP aggregation model considering network constraints and temporal coupling constraints of DERs is constructed, while some VPP performance parameters are proposed to characterize and quantify the regulation ability. An uncertainty set considering time-series coupling properties of variables is constructed, and an aggregation method under uncertainty scenarios is proposed based on a two-stage robust optimization model. In addition, a dynamic aggregation strategy is proposed for the application of VPPs in electricity markets. Finally, case studies demonstrates that the proposed method provides a more extensive feasible region compared to other methods, and the deviation power remains within a reasonable range. The dynamic aggregation strategy facilitates the synergistic and correlative operation of DERs, exploits the regulation ability of the VPP in frequency regulation and spinning reserve, and improves the feasibility of practical applications. Simultaneously, the income of the VPP increased by 29.5 %.

Suggested Citation

  • Liu, Xin & Li, Yang & Wang, Li & Tang, Junbo & Qiu, Haifeng & Berizzi, Alberto & Valentin, Ilea & Gao, Ciwei, 2024. "Dynamic aggregation strategy for a virtual power plant to improve flexible regulation ability," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s036054422401034x
    DOI: 10.1016/j.energy.2024.131261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401034X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jian & Ilea, Valentin & Bovo, Cristian & Xie, Ning & Wang, Yong, 2023. "Optimal self-scheduling for a multi-energy virtual power plant providing energy and reserve services under a holistic market framework," Energy, Elsevier, vol. 278(PB).
    2. Meng, Weiqi & Song, Dongran & Huang, Liansheng & Chen, Xiaojiao & Yang, Jian & Dong, Mi & Talaat, M. & Elkholy, M.H., 2024. "Distributed energy management of electric vehicle charging stations based on hierarchical pricing mechanism and aggregate feasible regions," Energy, Elsevier, vol. 291(C).
    3. Chen, Lin & Tang, Zhiyuan & He, Shuaijia & Liu, Junyong, 2024. "Feasible operation region estimation of virtual power plant considering heterogeneity and uncertainty of distributed energy resources," Applied Energy, Elsevier, vol. 362(C).
    4. Kong, Xiangyu & Lu, Wenqi & Wu, Jianzhong & Wang, Chengshan & Zhao, Xv & Hu, Wei & Shen, Yu, 2023. "Real-time pricing method for VPP demand response based on PER-DDPG algorithm," Energy, Elsevier, vol. 271(C).
    5. Wang, Jingjie & Qiu, Rujia & Xu, Bin & Wu, Hongbin & Tang, Longjiang & Zhang, Mingxing & Ding, Ming, 2023. "Aggregated large-scale air-conditioning load: Modeling and response capability evaluation of virtual generator units," Energy, Elsevier, vol. 276(C).
    6. Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael, 2021. "Mixed-integer linear programming based optimization strategies for renewable energy communities," Energy, Elsevier, vol. 237(C).
    7. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    8. Fan, Linyuan & Ji, Dandan & Lin, Geng & Lin, Peng & Liu, Lixi, 2023. "Information gap-based multi-objective optimization of a virtual energy hub plant considering a developed demand response model," Energy, Elsevier, vol. 276(C).
    9. Cui, Xueyuan & Liu, Shu & Ruan, Guangchun & Wang, Yi, 2024. "Data-driven aggregation of thermal dynamics within building virtual power plants," Applied Energy, Elsevier, vol. 353(PB).
    10. Chen, Siqi & Zhang, Kuan & Liu, Nian & Xie, Yawen, 2024. "Unlock the aggregated flexibility of electricity-hydrogen integrated virtual power plant for peak-regulation," Applied Energy, Elsevier, vol. 360(C).
    11. Ding, Zhetong & Li, Yaping & Zhang, Kaifeng & Peng, Jimmy Chih-Hsien, 2024. "Two-stage dynamic aggregation involving flexible resource composition and coordination based on submodular optimization," Applied Energy, Elsevier, vol. 360(C).
    12. Liu, Xin & Li, Yang & Lin, Xueshan & Guo, Jiqun & Shi, Yunpeng & Shen, Yunwei, 2022. "Dynamic bidding strategy for a demand response aggregator in the frequency regulation market," Applied Energy, Elsevier, vol. 314(C).
    13. Bashiri Khouzestani, Leyla & Sheikh-El-Eslami, Mohammad Kazem & Salemi, Amir Hosein & Gerami Moghaddam, Iman, 2023. "Virtual smart energy Hub: A powerful tool for integrated multi energy systems operation," Energy, Elsevier, vol. 265(C).
    14. Mohammed, Nooriya A. & Al-Bazi, Ammar, 2021. "Management of renewable energy production and distribution planning using agent-based modelling," Renewable Energy, Elsevier, vol. 164(C), pages 509-520.
    15. Tan, Caixia & Wang, Jing & Geng, Shiping & Pu, Lei & Tan, Zhongfu, 2021. "Three-level market optimization model of virtual power plant with carbon capture equipment considering copula–CVaR theory," Energy, Elsevier, vol. 237(C).
    16. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2023. "Predictive operation optimization of multi-energy virtual power plant considering behavior uncertainty of diverse stakeholders," Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei, Shufan & Tan, Qinliang & Liu, Yuan & Trivedi, Anupam & Srinivasan, Dipti, 2023. "Optimal bidding strategy for virtual power plant participating in combined electricity and ancillary services market considering dynamic demand response price and integrated consumption satisfaction," Energy, Elsevier, vol. 284(C).
    2. Zhao, Kaifang & Qiu, Kai & Yan, Jian & Shaker, Mir Pasha, 2023. "Technical and economic operation of VPPs based on competitive bi–level negotiations," Energy, Elsevier, vol. 282(C).
    3. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    4. Li, Jinchao & Sun, Zihao & Niu, Xiaoxuan & Li, Shiwei, 2024. "Economic optimization scheduling of virtual power plants considering an incentive based tiered carbon price," Energy, Elsevier, vol. 305(C).
    5. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).
    6. Wang, Jian & Ilea, Valentin & Bovo, Cristian & Xie, Ning & Wang, Yong, 2023. "Optimal self-scheduling for a multi-energy virtual power plant providing energy and reserve services under a holistic market framework," Energy, Elsevier, vol. 278(PB).
    7. Zheng, Yangbing & Xue, Xiao & Xi, Sun & Xin, Wang, 2024. "Balancing Possibilist-probabilistic risk assessment for smart energy hubs: Enabling secure peer-to-peer energy sharing with CCUS technology and cyber-security," Energy, Elsevier, vol. 304(C).
    8. Liao, Zitian & Liao, Xiaoqun & Khakichi, Aroos, 2024. "Optimum planning of energy hub with participation in electricity market and heat markets and application of integrated load response program with improved particle swarm algorithm," Energy, Elsevier, vol. 286(C).
    9. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    10. Chankook Park & Wan Gyu Heo & Myung Eun Lee, 2024. "Study on Consumers’ Perceived Benefits and Risks of Smart Energy System," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 288-300, May.
    11. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    12. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    13. Adil, Muhammad & Mahmud, M.A. Parvez & Kouzani, Abbas Z. & Khoo, Sui Yang, 2024. "Three-stage energy trading framework for retailers, charging stations, and electric vehicles: A game-theoretic approach," Energy, Elsevier, vol. 301(C).
    14. Hua, Lyu-Guang & Hafeez, Ghulam & Alghamdi, Baheej & Alghamdi, Hisham & Khan, Farrukh Aslam & Ullah, Safeer, 2025. "Demand response with pricing schemes and consumers mode constraints for energy balancing in smart grids," Applied Energy, Elsevier, vol. 377(PB).
    15. Ruben Barreto & Calvin Gonçalves & Luis Gomes & Pedro Faria & Zita Vale, 2022. "Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response," Energies, MDPI, vol. 15(7), pages 1-18, March.
    16. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    17. Luwen Pan & Jiajia Chen, 2024. "Optimal Energy Storage Configuration of Prosumers with Uncertain Photovoltaic in the Presence of Customized Pricing-Based Demand Response," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    18. Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
    19. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    20. Tan, Mao & Li, Zibin & Su, Yongxin & Ren, Yuling & Wang, Ling & Wang, Rui, 2024. "Dual time-scale robust optimization for energy management of distributed energy community considering source-load uncertainty," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s036054422401034x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.