IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v359y2024ics0306261924000941.html
   My bibliography  Save this article

Development of adjustable solar photovoltaic system for integration with solar shading louvers on building façades

Author

Listed:
  • Ito, Risa
  • Lee, Sihwan

Abstract

Increasing energy demand and its correlation with global warming underscore the urgency of exploring renewable energy sources, particularly solar power. This requirement is even more pronounced for mid- and high-rise buildings characterized by substantial energy consumption, necessitating the identification of optimal locations for solar panel installations. The purpose of this study is to develop an autonomously adjusted solar photovoltaic (PV) system for integration with solar shading louvers (adjustable PV louver system). Because the system can automatically adjust the angle of the solar PV panels by tracking the movement of the sun, electricity generation can be enhanced. To evaluate the performance of the adjustable PV louver system, we measured the amount of electricity generation with prototype model and developed a numerical analysis model for power generation calculations and a heating and cooling load calculation model. The major obtained findings are as follows: (1) Compared with a stationary PV louver system with fixed angles, actual measurement result shows that the adjustable vertical PV louver system exhibited a notable 7.3% improvement in daily electricity generation, whereas the adjustable horizontal PV louver system demonstrated an even more significant increase of 9.3%. (2) A parametric study involving the number of louvers was conducted to evaluate the influence of the shadows on each louver. The results showed that despite the presence of shadows between louvers, maintaining the number of louvers required to cover the window width resulted in improved electricity generation. (3) Heating and cooling load calculation for an office building in Japan shows that installing the adjustable horizontal PV louver system on window surfaces consumes the least amount of electricity.

Suggested Citation

  • Ito, Risa & Lee, Sihwan, 2024. "Development of adjustable solar photovoltaic system for integration with solar shading louvers on building façades," Applied Energy, Elsevier, vol. 359(C).
  • Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000941
    DOI: 10.1016/j.apenergy.2024.122711
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924000941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar S. Asfour, 2018. "Solar and Shading Potential of Different Configurations of Building Integrated Photovoltaics Used as Shading Devices Considering Hot Climatic Conditions," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    2. Tien Nhat Tran & Gu Seomun & Ruda Lee & Hyomun Lee & Jongho Yoon & Dongsu Kim, 2023. "Development and Implementation of Photovoltaic Integrated Multi-Skin Façade (PV-MSF) Design Based on Geometrical Concepts to Improve Building Energy Efficiency Performance," Sustainability, MDPI, vol. 15(3), pages 1-32, February.
    3. Walker, Linus & Hofer, Johannes & Schlueter, Arno, 2019. "High-resolution, parametric BIPV and electrical systems modeling and design," Applied Energy, Elsevier, vol. 238(C), pages 164-179.
    4. Yolcan, Oguz Ozan, 2023. "World energy outlook and state of renewable energy: 10-Year evaluation," Innovation and Green Development, Elsevier, vol. 2(4).
    5. Krarti, Moncef, 2021. "Evaluation of PV integrated sliding-rotating overhangs for US apartment buildings," Applied Energy, Elsevier, vol. 293(C).
    6. Freitas, Jader de Sousa & Cronemberger, Joára & Soares, Raí Mariano & Amorim, Cláudia Naves David, 2020. "Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug," Renewable Energy, Elsevier, vol. 160(C), pages 1468-1479.
    7. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).
    8. Krarti, Moncef, 2021. "Impact of PV integrated rotating overhangs for US residential buildings," Renewable Energy, Elsevier, vol. 174(C), pages 835-849.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weifan Long & Xiaofei Chen & Qingsong Ma & Xindong Wei & Qiao Xi, 2022. "An Evaluation of the PV Integrated Dynamic Overhangs Based on Parametric Performance Design Method: A Case Study of a Student Apartment in China," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    2. Krarti, Moncef, 2023. "Optimal energy performance of dynamic sliding and insulated shades for residential buildings," Energy, Elsevier, vol. 263(PB).
    3. Jing, Yifan & Zhu, Li & Yin, Baoquan & Li, Fangfang, 2023. "Evaluating the PV system expansion potential of existing integrated energy parks: A case study in North China," Applied Energy, Elsevier, vol. 330(PA).
    4. Bushra, Nayab, 2022. "A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Sung Kwon Jung & Youngchul Kim & Jin Woo Moon, 2020. "Performance Evaluation of Control Methods for PV-Integrated Shading Devices," Energies, MDPI, vol. 13(12), pages 1-21, June.
    6. Tang, Haida & Wu, Juhu & Li, Chunying, 2024. "Experimental study of RRC-PV modules under hot summer and cold winter climate," Renewable Energy, Elsevier, vol. 221(C).
    7. Tian, Xinyi & Wang, Jun & Yuan, Shuang & Ji, Jie & Ke, Wei & Wang, Chuyao, 2023. "Investigation on the electrical performance of a curved PV roof integrated with CIGS cells for traditional Chinese houses," Energy, Elsevier, vol. 263(PC).
    8. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    9. Assoa, Y.B. & Levrard, D., 2020. "A lightweight triangular building integrated photovoltaic module," Applied Energy, Elsevier, vol. 279(C).
    10. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    11. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    12. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    13. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    14. Krarti, Moncef, 2023. "Optimal optical properties for smart glazed windows applied to residential buildings," Energy, Elsevier, vol. 278(PB).
    15. Jianhua Ding & Xinyi Zou & Murong Lv, 2023. "Influence of Opposing Exterior Window Geometry on the Carbon Emissions of Indoor Lighting under the Combined Effect of Natural Lighting and Artificial Lighting in the City of Shenyang, China," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    16. Federico Minelli & Diana D’Agostino & Maria Migliozzi & Francesco Minichiello & Pierpaolo D’Agostino, 2023. "PhloVer: A Modular and Integrated Tracking Photovoltaic Shading Device for Sustainable Large Urban Spaces—Preliminary Study and Prototyping," Energies, MDPI, vol. 16(15), pages 1-35, August.
    17. Chen, Yanling & Yang, Wenxian & Wei, Kexiang & Qin, Bo, 2024. "Enhancing tidal current turbine efficiency through multi-biomimetic blade design features," Energy, Elsevier, vol. 293(C).
    18. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Jeoung, Jaewon & Hong, Taehoon, 2024. "Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    19. Liu, Yutong & Zheng, Mingbo & Shum, Wai Yan, 2024. "On the linkages between digital finance and real economy in China: A cointegration analysis," Innovation and Green Development, Elsevier, vol. 3(1).
    20. Wei, Jiping & Zhou, Jing & Cheng, Zhangfan, 2023. "Role of E-marketing of mineral products in achieving sustainability," Resources Policy, Elsevier, vol. 86(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.