IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp835-849.html
   My bibliography  Save this article

Impact of PV integrated rotating overhangs for US residential buildings

Author

Listed:
  • Krarti, Moncef

Abstract

The energy benefits of integrating PV panels with dynamic overhangs are evaluated for US residential buildings. Various control strategies are investigated to operate the dynamic overhangs to minimize annual net energy demands to account for both building energy needs and PV electricity generation yields. The analysis results indicate that dynamic overhangs can reduce significantly the annual energy demand for US residences compared to no-overhang and static overhang options even when controlled on a monthly basis and without any PV panels. Specifically, it is found that dynamic overhangs applied to southern facing windows for houses located in Golden, CO, can save up to 6% when no-PV array is installed and more than 35% when integrated with PV panels using monthly adjustments. Even higher savings up to 90% can be achieved for houses located in warm climates and those with larger windows. Moreover, PV-integrated dynamic overhangs can provide energy savings for windows oriented in any direction especially when adjusted on daily basis.

Suggested Citation

  • Krarti, Moncef, 2021. "Impact of PV integrated rotating overhangs for US residential buildings," Renewable Energy, Elsevier, vol. 174(C), pages 835-849.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:835-849
    DOI: 10.1016/j.renene.2021.04.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konstantoglou, Maria & Tsangrassoulis, Aris, 2016. "Dynamic operation of daylighting and shading systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 268-283.
    2. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
    3. Fiorentini, Massimo & Wall, Josh & Ma, Zhenjun & Braslavsky, Julio H. & Cooper, Paul, 2017. "Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage," Applied Energy, Elsevier, vol. 187(C), pages 465-479.
    4. Jakica, Nebojsa, 2018. "State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1296-1328.
    5. Loutzenhiser, Peter G. & Maxwell, Gregory M. & Manz, Heinrich, 2007. "An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows," Energy, Elsevier, vol. 32(10), pages 1855-1870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ito, Risa & Lee, Sihwan, 2024. "Development of adjustable solar photovoltaic system for integration with solar shading louvers on building façades," Applied Energy, Elsevier, vol. 359(C).
    2. Tang, Haida & Wu, Juhu & Li, Chunying, 2024. "Experimental study of RRC-PV modules under hot summer and cold winter climate," Renewable Energy, Elsevier, vol. 221(C).
    3. Tyler R. Stevens & Nathan B. Crane & Rydge B. Mulford, 2023. "Topology Morphing Insulation: A Review of Technologies and Energy Performance in Dynamic Building Insulation," Energies, MDPI, vol. 16(19), pages 1-38, October.
    4. Krarti, Moncef, 2023. "Optimal energy performance of dynamic sliding and insulated shades for residential buildings," Energy, Elsevier, vol. 263(PB).
    5. Wei, Changqi & Wang, Jiangjiang & Zhou, Yuan & Li, Yuxin & Liu, Weiliang, 2024. "Co-optimization of system configurations and energy scheduling of multiple community integrated energy systems to improve photovoltaic self-consumption," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krarti, Moncef, 2021. "Evaluation of PV integrated sliding-rotating overhangs for US apartment buildings," Applied Energy, Elsevier, vol. 293(C).
    2. Krarti, Moncef, 2023. "Optimal energy performance of dynamic sliding and insulated shades for residential buildings," Energy, Elsevier, vol. 263(PB).
    3. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    5. Dong Eun Jung & Chanuk Lee & Kwang Ho Lee & Minjae Shin & Sung Lok Do, 2021. "Evaluation of Building Energy Performance with Optimal Control of Movable Shading Device Integrated with PV System," Energies, MDPI, vol. 14(7), pages 1-21, March.
    6. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    7. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    8. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
    9. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    10. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    11. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    12. Antonis Kontadakis & Aris Tsangrassoulis & Lambros Doulos & Stelios Zerefos, 2017. "A Review of Light Shelf Designs for Daylit Environments," Sustainability, MDPI, vol. 10(1), pages 1-24, December.
    13. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    14. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    15. Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
    16. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    17. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    18. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    19. Wassim Salameh & Jalal Faraj & Elias Harika & Rabih Murr & Mahmoud Khaled, 2021. "On the Optimization of Electrical Water Heaters: Modelling Simulations and Experimentation," Energies, MDPI, vol. 14(13), pages 1-12, June.
    20. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:835-849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.