IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas030626192402172x.html
   My bibliography  Save this article

A privacy-preserving heterogeneous federated learning framework with class imbalance learning for electricity theft detection

Author

Listed:
  • Wen, Hanguan
  • Liu, Xiufeng
  • Lei, Bo
  • Yang, Ming
  • Cheng, Xu
  • Chen, Zhe

Abstract

Electricity theft is a critical issue in smart grids, leading to significant financial losses for utilities and compromising the stability and reliability of the power system. Existing centralized methods for electricity theft detection raise privacy and security concerns due to the need for sharing sensitive customer data. To address these challenges, we propose HeteroFL, a novel heterogeneous federated learning framework for privacy-preserving electricity theft detection in smart grids. HeteroFL enables retailers to collaboratively train a global model without sharing their private data, while accounting for the class imbalance problem prevalent in electricity theft datasets. We introduce a data partitioning and aggregation scheme that assigns different weights to classes, ensuring a balanced contribution and representation of each class in the global model. In addition, our framework leverages the CKKS homomorphic encryption scheme to perform secure computations on encrypted parameters and employs a CNN-LSTM model to capture the spatial and temporal dependencies in electricity consumption patterns. We evaluate HeteroFL using a real-world smart grid dataset and demonstrate its effectiveness and efficiency in detecting energy theft. Furthermore, we analyze the robustness and perform ablation studies to validate the framework’s stability and identify the contributions of its key components. Although the impact of approximation errors introduced by the CKKS scheme on the CNN-LSTM model’s performance requires further investigation, our framework presents a promising solution for privacy-preserving and accurate electricity theft detection in smart grids using heterogeneous federated learning.

Suggested Citation

  • Wen, Hanguan & Liu, Xiufeng & Lei, Bo & Yang, Ming & Cheng, Xu & Chen, Zhe, 2025. "A privacy-preserving heterogeneous federated learning framework with class imbalance learning for electricity theft detection," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s030626192402172x
    DOI: 10.1016/j.apenergy.2024.124789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192402172X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s030626192402172x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.