IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010302.html
   My bibliography  Save this article

Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties

Author

Listed:
  • Zhao, Bingxu
  • Cao, Xiaodong
  • Duan, Pengfei

Abstract

To achieve efficient utilization of renewable energy and facilitate the development of a more equitable and harmonious power market, an optimization study is conducted focusing on peer-to-peer (P2P) power sharing within multiple low-carbon microgrids (LCMGs). Firstly, the coordinated operation mechanism of a LCMG is proposed involving a step-type carbon trading scheme as well as flexible supply and demand. Then, an optimization model of multi-LCMG cooperative operation is formulated based on the Nash bargaining theory. The original Nash bargaining problem is equivalently transformed into a subproblem of maximizing alliance benefits and a subproblem of maximizing the benefits of power trading. In the first subproblem, a combination of opportunity constraints and robust optimization method is employed to address these multiple uncertainties from renewable generation and electricity prices. The second subproblem addresses the issue of gaming fraud among LCMGs with a third-party intermediary model applied to achieve a fraud equilibrium. Further, to solve these problems efficiently, an improved adaptive parametric alternating direction method of multipliers (AP-ADMM) algorithm is used to protect the privacy of each party. Finally, a case study was conducted to validate the efficacy of the proposed method in enhancing the stability and cost-effectiveness of cooperative optimization within multi-LCMG systems.

Suggested Citation

  • Zhao, Bingxu & Cao, Xiaodong & Duan, Pengfei, 2024. "Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010302
    DOI: 10.1016/j.energy.2024.131257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    2. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    3. Ming, Hao & Meng, Jing & Gao, Ciwei & Song, Meng & Chen, Tao & Choi, Dae-Hyun, 2023. "Efficiency improvement of decentralized incentive-based demand response: Social welfare analysis and market mechanism design," Applied Energy, Elsevier, vol. 331(C).
    4. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Nash bargaining based collaborative energy management for regional integrated energy systems in uncertain electricity markets," Energy, Elsevier, vol. 269(C).
    5. Li, Zhengmao & Xu, Yan & Wang, Peng & Xiao, Gaoxi, 2023. "Coordinated preparation and recovery of a post-disaster Multi-energy distribution system considering thermal inertia and diverse uncertainties," Applied Energy, Elsevier, vol. 336(C).
    6. Yin, Mingjia & Li, Kang & Yu, James, 2022. "A data-driven approach for microgrid distributed generation planning under uncertainties," Applied Energy, Elsevier, vol. 309(C).
    7. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2023. "Blockchain technology for distributed generation: A review of current development, challenges and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Duan, Pengfei & Zhao, Bingxu & Zhang, Xinghui & Fen, Mengdan, 2023. "A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game," Energy, Elsevier, vol. 275(C).
    9. Eiichi Kusatake & Mitsue Imahori & Norihiko Shinomiya, 2023. "A Peer-to-Peer Energy Trading Model for Optimizing Both Efficiency and Fairness," Energies, MDPI, vol. 16(14), pages 1-17, July.
    10. Wang, Yifei & Wang, Xiuli & Shao, Chengcheng & Gong, Naiwei, 2020. "Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach," Renewable Energy, Elsevier, vol. 155(C), pages 513-530.
    11. Ruhang, Xu & Jia, Jia, 2023. "Towards reliability competition: Non-cooperative market mechanism under high variable renewable energy penetration," Applied Energy, Elsevier, vol. 331(C).
    12. Waseem, Muhammad & Lin, Zhenzhi & Liu, Shengyuan & Zhang, Zhi & Aziz, Tarique & Khan, Danish, 2021. "Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources," Applied Energy, Elsevier, vol. 290(C).
    13. Zhao, Leilei & Xue, Yixun & Sun, Hongbin & Du, Yuan & Chang, Xinyue & Su, Jia & Li, Zening, 2023. "Benefit allocation for combined heat and power dispatch considering mutual trust," Applied Energy, Elsevier, vol. 345(C).
    14. Hengyu Liu & Qingqi Zhao & Yang Liu & Zuoxia Xing & Dawei Hu & Pengfei Zhang & Zhi Zhang & Jiazheng Sun, 2023. "A Multi-Subject Game-Based Operation Strategy for VPPs Integrating Wind-Solar-Storage," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    15. Fu, Wenlong & Fu, Yuchen & Li, Bailing & Zhang, Hairong & Zhang, Xuanrui & Liu, Jiarui, 2023. "A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 348(C).
    16. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    17. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    18. Jiang, Tao & Li, Xue & Kou, Xiao & Zhang, Rufeng & Tian, Guoda & Li, Fangxing, 2022. "Available transfer capability evaluation in electricity-dominated integrated hybrid energy systems with uncertain wind power: An interval optimization solution," Applied Energy, Elsevier, vol. 314(C).
    19. Zhang, Jiaqi & Tian, Guang & Chen, Xiangyu & Liu, Pei & Li, Zheng, 2023. "A chance-constrained programming approach to optimal planning of low-carbon transition of a regional energy system," Energy, Elsevier, vol. 278(PA).
    20. Li, Ye & Liu, Zihan & Sang, Yufeng & Hu, Jingfan & Li, Bojia & Zhang, Xinyu & Jurasz, Jakub & Zheng, Wandong, 2023. "Optimization of integrated energy system for low-carbon community considering the feasibility and application limitation," Applied Energy, Elsevier, vol. 348(C).
    21. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    2. Zheng, Weiye & Xu, Siyu & Liu, Jiawei & Zhu, Jizhong & Luo, Qingju, 2023. "Participation of strategic district heating networks in electricity markets: An arbitrage mechanism and its equilibrium analysis," Applied Energy, Elsevier, vol. 350(C).
    3. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    4. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    5. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    6. Molin An & Xueshan Han & Tianguang Lu, 2024. "A Stochastic Model Predictive Control Method for Tie-Line Power Smoothing under Uncertainty," Energies, MDPI, vol. 17(14), pages 1-17, July.
    7. Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
    8. Long Wang, 2023. "Optimal Scheduling Strategy for Multi-Energy Microgrid Considering Integrated Demand Response," Energies, MDPI, vol. 16(12), pages 1-17, June.
    9. Mohseni, Shayan & Pishvaee, Mir Saman, 2023. "Energy trading and scheduling in networked microgrids using fuzzy bargaining game theory and distributionally robust optimization," Applied Energy, Elsevier, vol. 350(C).
    10. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    11. Zhou, Kaile & Fei, Zhineng & Hu, Rong, 2023. "Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties," Energy, Elsevier, vol. 265(C).
    12. Zheng, Weiye & Lu, Hao & Zhu, Jizhong, 2023. "Incentivizing cooperative electricity-heat operation: A distributed asymmetric Nash bargaining mechanism," Energy, Elsevier, vol. 280(C).
    13. Wang, Xuejie & zhao, Huiru & Lu, Hao & Zhang, Yuanyuan & Wang, Yuwei & Wang, Jingbo, 2022. "Decentralized coordinated operation model of VPP and P2H systems based on stochastic-bargaining game considering multiple uncertainties and carbon cost," Applied Energy, Elsevier, vol. 312(C).
    14. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    15. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    16. Tostado-Véliz, Marcos & Liang, Yingqi & Hasanien, Hany M. & Turky, Rania A. & Martínez-Moreno, Juan & Jurado, Francisco, 2023. "Robust optimal coordination of active distribution networks and energy communities with high penetration of renewables," Renewable Energy, Elsevier, vol. 218(C).
    17. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Nash bargaining based collaborative energy management for regional integrated energy systems in uncertain electricity markets," Energy, Elsevier, vol. 269(C).
    18. Zhang, Kaoshe & Gao, Congchong & Zhang, Gang & Xie, Tuo & Li, Hua, 2024. "Electricity and heat sharing strategy of regional comprehensive energy multi-microgrid based on double-layer game," Energy, Elsevier, vol. 293(C).
    19. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    20. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.