IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3643-d1441873.html
   My bibliography  Save this article

Computational Fluid Dynamic Investigation of Local Flow-Field Conditions in Lab Polymer Electrolyte Membrane Fuel Cells to Identify Degradation Stressors and Performance Enhancers

Author

Listed:
  • Margherita Bulgarini

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Augusto Della Torre

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Andrea Baricci

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Amedeo Grimaldi

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Luca Marocco

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Riccardo Mereu

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Gianluca Montenegro

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Angelo Onorati

    (Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

Abstract

The use of polymer electrolyte membrane (PEM) fuel cells as an alternative to internal combustion engines can significantly contribute to the decarbonization of the transport sector, especially for heavy-duty applications. However, degradation is still an issue for this type of component, affecting their durability and performance. In this scenario, a detailed analysis of the anodic and cathodic distributors’ flow-field geometry may help to identify some local stressors that trigger the degradation mechanism, such as local hot spots and reactants not having a uniform distribution. A computational fluid dynamic (CFD) methodology is able to provide a volumetric description of a PEM fuel cell so it can be a useful tool to better understand the physical phenomena that govern the component operations. In this work, the open-source simulation library openFuelCell2 is adopted for a detailed analysis of two different PEM fuel cells characterized by standard distributor geometries, namely a parallel channel geometry and a serpentine configuration. The library, based on the OpenFOAM code, has been extended with a novel implementation accounting for the catalytic activity reduction due to the platinum oxide (PtOx) formation occurring under certain particular conditions. The adopted methodology is firstly validated resorting to experimental data acquired for the two different fuel cell configurations. The analysis highlights that the PtOx formation leads to a reduction in the fuel cell performance reaching up to 60–80% when operating at high voltages. Then, the effect of the distributor geometries on the component performance is investigated by resorting to in-plane and through-plane physical quantity distribution, such as reactant concentration, pressure or velocity fields. While the parallel flow channel configuration shows some diffusion losses under the rib, the serpentine channel geometry configuration can achieve some local performance peaks thanks to the convective flow in the gas diffusion layer (GDL) driven by local pressure gradients. Furthermore, the local enhancement in terms of higher current density under the rib is associated with an effective heat removal due to the high thermal capacity of the bipolar plate, avoiding the generation of local hot spots.

Suggested Citation

  • Margherita Bulgarini & Augusto Della Torre & Andrea Baricci & Amedeo Grimaldi & Luca Marocco & Riccardo Mereu & Gianluca Montenegro & Angelo Onorati, 2024. "Computational Fluid Dynamic Investigation of Local Flow-Field Conditions in Lab Polymer Electrolyte Membrane Fuel Cells to Identify Degradation Stressors and Performance Enhancers," Energies, MDPI, vol. 17(15), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3643-:d:1441873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arun Saco, S. & Thundil Karuppa Raj, R. & Karthikeyan, P., 2016. "A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique," Energy, Elsevier, vol. 113(C), pages 558-573.
    2. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    3. Cheng, Ming & Luo, Liuxuan & Feng, Yong & Feng, Qilong & Yan, Xiaohui & Shen, Shuiyun & Guo, Yangge & Zhang, Junliang, 2024. "Numerical studies on porous water transport plates applied in PEMFCs under pure oxygen condition," Applied Energy, Elsevier, vol. 362(C).
    4. Yuan, Wei & Wang, Aoyu & Ye, Guangzhao & Pan, Baoyou & Tang, Kairui & Chen, Haimu, 2017. "Dynamic relationship between the CO2 gas bubble behavior and the pressure drop characteristics in the anode flow field of an active liquid-feed direct methanol fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 431-443.
    5. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    6. Xiao, Liusheng & Bian, Miaoqi & Sun, Yushuai & Yuan, Jinliang & Wen, Xiaofei, 2024. "Transport properties evaluation of pore-scale GDLs for PEMFC using orthogonal design method," Applied Energy, Elsevier, vol. 357(C).
    7. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2024. "Conduction mechanism analysis and modeling of different gas diffusion layers for PEMFC to improve their bulk conductivities via microstructure design," Applied Energy, Elsevier, vol. 362(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    2. Suprava Chakraborty & Devaraj Elangovan & Karthikeyan Palaniswamy & Ashley Fly & Dineshkumar Ravi & Denis Ashok Sathia Seelan & Thundil Karuppa Raj Rajagopal, 2022. "A Review on the Numerical Studies on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) Flow Channel Designs for Automotive Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    3. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    4. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    5. Soopee, Asif & Sasmito, Agus P. & Shamim, Tariq, 2019. "Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 233, pages 300-311.
    6. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    7. Do, Kyu Hyung & Kim, Taehoon & Han, Yong-Shik & Choi, Byung-Il & Kim, Myungbae, 2017. "Investigation on flow distribution of the fuel supply nozzle in the annular combustor of a micro gas turbine," Energy, Elsevier, vol. 126(C), pages 361-373.
    8. Wang, Aoyu & Yuan, Wei & Huang, Shimin & Tang, Yong & Chen, Yu, 2017. "Structural effects of expanded metal mesh used as a flow field for a passive direct methanol fuel cell," Applied Energy, Elsevier, vol. 208(C), pages 184-194.
    9. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    10. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    11. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    12. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    14. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    15. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    16. Prithvi Raj Pedapati & Shankar Raman Dhanushkodi & Ramesh Kumar Chidambaram & Dawid Taler & Tomasz Sobota & Jan Taler, 2024. "Design and Manufacturing Challenges in PEMFC Flow Fields—A Review," Energies, MDPI, vol. 17(14), pages 1-34, July.
    17. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    18. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    19. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    20. Min, Xiaoteng & Xia, Junjie & Zhang, Xiongwen & Ding, Kunpeng, 2022. "Study on the output performance of the proton exchange membrane fuel cells using print circuit board," Renewable Energy, Elsevier, vol. 197(C), pages 359-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3643-:d:1441873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.