IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923017646.html
   My bibliography  Save this article

Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting

Author

Listed:
  • Wang, Zhen
  • Fan, Kangqi
  • Zhao, Shizhong
  • Wu, Shuxin
  • Zhang, Xuan
  • Zhai, Kangjia
  • Li, Zhiqi
  • He, Hua

Abstract

Ultralow-frequency (< 5 Hz) vibration energy is abundant in the environment, but its efficient utilization is still highly difficult due to the frequency-mismatch problem encountered by the vibratory energy harvesters and the slow rotation of rotary energy harvesters (REHs). To solve this issue, we developed herein a high-performance REH (named AI-REH) based on the archery-inspired catapult mechanism, which breaks through the limitation of the slow vibration source to the REH rotation speed through an innovative magnetic coupling strategy between the vibration source and the AI-REH. By employing an accumulator spring as the energy reservoir, the AI-REH also realizes the accumulation and controllable release of ultralow-frequency vibration energy via the interaction between the magnetic coupling and the elastic force. High-speed kinetic energy can thus be acquired for efficiently powering the rotor, contributing to significantly accelerated rotor speeds and enhanced electric outputs. Compared with the traditional counterpart, the AI-REH achieves 3.6-fold increase in rotor speed, 3.5-fold increase in output voltage and 3.0-fold increase in output power under an ultralow-frequency vibration of 4 Hz. A power backpack was also constructed and tested, which demonstrates the superior capability of the AI-REH in harnessing real ultralow-frequency amplitude-varying vibration energy. The AI-REH proposed in this study provides a new pathway for efficiently exploiting environmental ultralow-frequency vibration energy toward self-sufficient systems with various purposes.

Suggested Citation

  • Wang, Zhen & Fan, Kangqi & Zhao, Shizhong & Wu, Shuxin & Zhang, Xuan & Zhai, Kangjia & Li, Zhiqi & He, Hua, 2024. "Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017646
    DOI: 10.1016/j.apenergy.2023.122400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
    2. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    3. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    4. Zou, Hong-Xiang & Zhao, Lin-Chuan & Gao, Qiu-Hua & Zuo, Lei & Liu, Feng-Rui & Tan, Ting & Wei, Ke-Xiang & Zhang, Wen-Ming, 2019. "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications," Applied Energy, Elsevier, vol. 255(C).
    5. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    6. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    7. Lin, Teng & Pan, Yu & Chen, Shikui & Zuo, Lei, 2018. "Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting," Applied Energy, Elsevier, vol. 213(C), pages 219-226.
    8. Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
    9. Zhong Lin Wang, 2017. "Catch wave power in floating nets," Nature, Nature, vol. 542(7640), pages 159-160, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Kangqi & Wang, Chenyu & Zhang, Yan & Guo, Jiyuan & Li, Rongchun & Wang, Fei & Tan, Qinxue, 2023. "Modeling and experimental verification of a pendulum-based low-frequency vibration energy harvester," Renewable Energy, Elsevier, vol. 211(C), pages 100-111.
    2. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Fan, Kangqi & Wang, Chenyu & Chen, Chenggen & Zhang, Yan & Wang, Peihong & Wang, Fei, 2021. "A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy," Renewable Energy, Elsevier, vol. 179(C), pages 339-350.
    4. Li, Rongchun & Fan, Kangqi & Ma, Xiaoyu & Wen, Tao & Liu, Qingli & Gao, Xianming & Zhu, Jiuling & Zhang, Yan, 2023. "A rotational energy harvester with a semi-flexible one-way clutch for capturing low-frequency vibration energy," Energy, Elsevier, vol. 281(C).
    5. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    6. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    7. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    8. Tan, Qinxue & Fan, Kangqi & Guo, Jiyuan & Wen, Tao & Gao, Libo & Zhou, Shengxi, 2021. "A cantilever-driven rotor for efficient vibration energy harvesting," Energy, Elsevier, vol. 235(C).
    9. Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
    10. Fan, Kangqi & Qu, Hengheng & Wu, Yipeng & Wen, Tao & Wang, Fei, 2020. "Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions," Renewable Energy, Elsevier, vol. 156(C), pages 1028-1039.
    11. Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
    12. Wang, Tao & Lou, Hu & Zhu, Shiqiang, 2022. "Bandwidth enhancement of a gimbaled-pendulum vibration energy harvester using spatial multi-stable mechanism," Applied Energy, Elsevier, vol. 326(C).
    13. Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
    14. Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.
    15. Janjua, Ahmed Nawaz & Shaefer, Maxwell & Amini, Seyed Hassan & Noble, Aaron & Shahab, Shima, 2024. "Vibrational energy transmission in underground continuous mining: Dynamic characteristics and experimental research of field data," Applied Energy, Elsevier, vol. 354(PA).
    16. Vidal, João V. & Carneiro, Pedro M.R. & Soares dos Santos, Marco P., 2024. "A complete physical 3D model from first principles of vibrational-powered electromagnetic generators," Applied Energy, Elsevier, vol. 357(C).
    17. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    18. Du, Xiaozhen & Chen, Haixiang & Li, Chicheng & Li, Zihao & Wang, Wenxiu & Guo, Dongxing & Yu, Hong & Wang, Junlei & Tang, Lihua, 2024. "Wake galloping piezoelectric-electromagnetic hybrid ocean wave energy harvesting with oscillating water column," Applied Energy, Elsevier, vol. 353(PA).
    19. Fan, Chengliang & Li, Hai & Zhang, Zutao & Pan, Yajia & Wu, Xiaoping & Ahmed, Ammar, 2023. "An H-shaped coupler energy harvester for application in heavy railways," Energy, Elsevier, vol. 270(C).
    20. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.