A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.117838
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
- Li, Meng & Jing, Xingjian, 2019. "Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting," Applied Energy, Elsevier, vol. 255(C).
- Zou, Hong-Xiang & Zhao, Lin-Chuan & Gao, Qiu-Hua & Zuo, Lei & Liu, Feng-Rui & Tan, Ting & Wei, Ke-Xiang & Zhang, Wen-Ming, 2019. "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications," Applied Energy, Elsevier, vol. 255(C).
- Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
- Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
- Qiu, Changyu & Yi, Yun Kyu & Wang, Meng & Yang, Hongxing, 2020. "Coupling an artificial neuron network daylighting model and building energy simulation for vacuum photovoltaic glazing," Applied Energy, Elsevier, vol. 263(C).
- Zhang, Liufeng & Zhang, Feibin & Qin, Zhaoye & Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring," Energy, Elsevier, vol. 238(PB).
- Maharjan, Pukar & Bhatta, Trilochan & Salauddin Rasel, M. & Salauddin, Md. & Toyabur Rahman, M. & Park, Jae Yeong, 2019. "High-performance cycloid inspired wearable electromagnetic energy harvester for scavenging human motion energy," Applied Energy, Elsevier, vol. 256(C).
- Paul, Kankana & Amann, Andreas & Roy, Saibal, 2021. "Tapered nonlinear vibration energy harvester for powering Internet of Things," Applied Energy, Elsevier, vol. 283(C).
- Liu, Mingyi & Lin, Rui & Zhou, Shengxi & Yu, Yilun & Ishida, Aki & McGrath, Margarita & Kennedy, Brook & Hajj, Muhammad & Zuo, Lei, 2018. "Design, simulation and experiment of a novel high efficiency energy harvesting paver," Applied Energy, Elsevier, vol. 212(C), pages 966-975.
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
- Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Ying & Wang, Wei & Xie, Junxiao & Lei, Yaguo & Cao, Junyi & Xu, Ye & Bader, Sebastian & Bowen, Chris & Oelmann, Bengt, 2022. "Enhanced variable reluctance energy harvesting for self-powered monitoring," Applied Energy, Elsevier, vol. 321(C).
- Wang, Zhixia & Du, Hongzhi & Wang, Wei & Zhang, Qichang & Gu, Fengshou & Ball, Andrew D. & Liu, Cheng & Jiao, Xuanbo & Qiu, Hongyun & Shi, Dawei, 2024. "A high performance contra-rotating energy harvester and its wireless sensing application toward green and maintain free vehicle monitoring," Applied Energy, Elsevier, vol. 356(C).
- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
- Masabi, Sayed Nahiyan & Fu, Hailing & Flint, James A. & Theodossiades, Stephanos, 2024. "A pendulum-based rotational energy harvester for self-powered monitoring of rotating systems in the era of industrial digitization," Applied Energy, Elsevier, vol. 365(C).
- Mojtaba Ghodsi & Morteza Mohammadzaheri & Payam Soltani, 2023. "Analysis of Cantilever Triple-Layer Piezoelectric Harvester (CTLPH): Non-Resonance Applications," Energies, MDPI, vol. 16(7), pages 1-17, March.
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Zhao, Ying-Jie & Wu, Zhi-Yuan & Liu, Feng-Rui & Wei, Ke-Xiang & Zhang, Wen-Ming, 2022. "Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process," Applied Energy, Elsevier, vol. 314(C).
- Tian, Haigang & Shan, Xiaobiao & Li, Xia & Wang, Junlei, 2023. "Enhanced airfoil-based flutter piezoelectric energy harvester via coupling magnetic force," Applied Energy, Elsevier, vol. 340(C).
- Chen, Keyu & Fang, Shitong & Lai, Zhihui & Cao, Junyi & Liao, Wei-Hsin, 2024. "A plucking rotational energy harvester with tapered thickness and auxetic structures for increasing power output," Applied Energy, Elsevier, vol. 357(C).
- Vidal, João V. & Carneiro, Pedro M.R. & Soares dos Santos, Marco P., 2024. "A complete physical 3D model from first principles of vibrational-powered electromagnetic generators," Applied Energy, Elsevier, vol. 357(C).
- Wang, Suo & Miao, Gang & Zhou, Shengxi & Yang, Zhichun & Yurchenko, Daniil, 2022. "A novel electromagnetic energy harvester based on the bending of the sole," Applied Energy, Elsevier, vol. 314(C).
- Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
- Castellano-Aldave, Carlos & Carlosena, Alfonso & Iriarte, Xabier & Plaza, Aitor, 2023. "Ultra-low frequency multidirectional harvester for wind turbines," Applied Energy, Elsevier, vol. 334(C).
- Tomasz Haniszewski & Maria Cieśla, 2022. "Energy Harvesting in the Crane-Hoisting Mechanism," Energies, MDPI, vol. 15(24), pages 1-22, December.
- Wang, Wei & Zhang, Ying & Wei, Zon-Han & Cao, Junyi, 2022. "Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester," Energy, Elsevier, vol. 261(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Wang, Yifeng & Li, Shoutai & Gao, Mingyuan & Ouyang, Huajiang & He, Qing & Wang, Ping, 2021. "Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration," Applied Energy, Elsevier, vol. 300(C).
- Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
- Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
- Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
- Eghbali, Pejman & Younesian, Davood & Farhangdoust, Saman, 2020. "Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators," Applied Energy, Elsevier, vol. 270(C).
- Fan, Kangqi & Wang, Chenyu & Zhang, Yan & Guo, Jiyuan & Li, Rongchun & Wang, Fei & Tan, Qinxue, 2023. "Modeling and experimental verification of a pendulum-based low-frequency vibration energy harvester," Renewable Energy, Elsevier, vol. 211(C), pages 100-111.
- Zhang, Ying & Wang, Wei & Xie, Junxiao & Lei, Yaguo & Cao, Junyi & Xu, Ye & Bader, Sebastian & Bowen, Chris & Oelmann, Bengt, 2022. "Enhanced variable reluctance energy harvesting for self-powered monitoring," Applied Energy, Elsevier, vol. 321(C).
- Mi, Jia & Li, Qiaofeng & Liu, Mingyi & Li, Xiaofan & Zuo, Lei, 2020. "Design, modelling, and testing of a vibration energy harvester using a novel half-wave mechanical rectification," Applied Energy, Elsevier, vol. 279(C).
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Zhao, Ying-Jie & Wu, Zhi-Yuan & Liu, Feng-Rui & Wei, Ke-Xiang & Zhang, Wen-Ming, 2022. "Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process," Applied Energy, Elsevier, vol. 314(C).
- Fang, Shitong & Miao, Gang & Chen, Keyu & Xing, Juntong & Zhou, Shengxi & Yang, Zhichun & Liao, Wei-Hsin, 2022. "Broadband energy harvester for low-frequency rotations utilizing centrifugal softening piezoelectric beam array," Energy, Elsevier, vol. 241(C).
- Li, Rongchun & Fan, Kangqi & Ma, Xiaoyu & Wen, Tao & Liu, Qingli & Gao, Xianming & Zhu, Jiuling & Zhang, Yan, 2023. "A rotational energy harvester with a semi-flexible one-way clutch for capturing low-frequency vibration energy," Energy, Elsevier, vol. 281(C).
- Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
- Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
- Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
- Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
- Pan, Yu & Lin, Teng & Qian, Feng & Liu, Cheng & Yu, Jie & Zuo, Jianyong & Zuo, Lei, 2019. "Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation," Applied Energy, Elsevier, vol. 247(C), pages 309-321.
- Yang, Yiqing & Chen, Peihao & Liu, Qiang, 2021. "A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel," Applied Energy, Elsevier, vol. 302(C).
More about this item
Keywords
Electromagnetic; Energy harvester; Magnetic plucking; Rotational motion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011636. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.