IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922009497.html
   My bibliography  Save this article

A two-dimensional electromagnetic vibration energy harvester with variable stiffness

Author

Listed:
  • Imbaquingo, Carlos
  • Bahl, Christian
  • Insinga, Andrea R.
  • Bjørk, Rasmus

Abstract

This work investigates the performance of an electromagnetic vibration harvester for two-dimensional vibrations with variable magnetic stiffness and electromagnetic damping. The device consists of a free-to-move cylindrical magnetic structure with a set of bearings located on top and bottom, a couple of coils located on top and bottom of the device and finally a fixed system of disk-shaped magnets placed inside a ring holder. The number of disk-shaped magnets in the ring holder can be varied to change the magnetic stiffness of the system. The performance of the device is characterized experimentally for nine different configurations of disk-shaped magnets, exploring both symmetric and asymmetric designs. Using an XY-shaker to vibrate the system in two dimensions in frequencies from 1 Hz to 10 Hz and with motion amplitude of 2 mm on both axes, a maximum power of 27 mW was harvested. This occurs for an asymmetric device, i.e. with different magnetic stiffnesses along its two axis. For symmetric devices the power is lower by a factor of two. Finally, varying the electromagnetic damping, which is controlled by varying the coil dimensions, can further increase the power to 42 mW.

Suggested Citation

  • Imbaquingo, Carlos & Bahl, Christian & Insinga, Andrea R. & Bjørk, Rasmus, 2022. "A two-dimensional electromagnetic vibration energy harvester with variable stiffness," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922009497
    DOI: 10.1016/j.apenergy.2022.119650
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922009497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yifeng & Li, Shoutai & Gao, Mingyuan & Ouyang, Huajiang & He, Qing & Wang, Ping, 2021. "Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration," Applied Energy, Elsevier, vol. 300(C).
    2. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
    3. Krzysztof Kecik & Marcin Kowalczuk, 2021. "Effect of Nonlinear Electromechanical Coupling in Magnetic Levitation Energy Harvester," Energies, MDPI, vol. 14(9), pages 1-16, May.
    4. Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sui, Guangdong & Shan, Xiaobiao & Chen, Yifeng & Zhou, Chunyu & Hou, Chengwei & Li, Hengyu & Cheng, Tinghai, 2024. "Dual-function of energy harvesting and vibration isolation via quasi-zero stiffness piezoelectric mechanism," Energy, Elsevier, vol. 301(C).
    2. Vidal, João V. & Carneiro, Pedro M.R. & Soares dos Santos, Marco P., 2024. "A complete physical 3D model from first principles of vibrational-powered electromagnetic generators," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    2. Gunn, B. & Alevras, P. & Flint, J.A. & Fu, H. & Rothberg, S.J. & Theodossiades, S., 2021. "A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains," Applied Energy, Elsevier, vol. 302(C).
    3. Krzysztof Kecik, 2022. "Modification of Electromechanical Coupling in Electromagnetic Harvester," Energies, MDPI, vol. 15(11), pages 1-15, May.
    4. Vidal, João V. & Rolo, Pedro & Carneiro, Pedro M.R. & Peres, Inês & Kholkin, Andrei L. & Soares dos Santos, Marco P., 2022. "Automated electromagnetic generator with self-adaptive structure by coil switching," Applied Energy, Elsevier, vol. 325(C).
    5. Zhenbang Cao & Haotong Ma & Xuegang Yu & Jianliang Shi & Hu Yang & Yi Tan & Ge Ren, 2022. "Global Dynamics of a Vibro-Impact Energy Harvester," Mathematics, MDPI, vol. 10(3), pages 1-12, February.
    6. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    7. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    8. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
    9. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    10. Qu, Shuai & Ren, Yuhao & Hu, Guobiao & Ding, Wei & Dong, Liwei & Yang, Jizhong & Wu, Zaixin & Zhu, Shengyang & Yang, Yaowen & Zhai, Wanming, 2024. "Event-driven piezoelectric energy harvesting for railway field applications," Applied Energy, Elsevier, vol. 364(C).
    11. Chen, Keyu & Gao, Qiang & Fang, Shitong & Zou, Donglin & Yang, Zhengbao & Liao, Wei-Hsin, 2021. "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, Elsevier, vol. 298(C).
    12. Wang, Wei & Zhang, Ying & Wei, Zon-Han & Cao, Junyi, 2022. "Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester," Energy, Elsevier, vol. 261(PB).
    13. Amr Mahmoud & Mohamed Zohdy, 2022. "Dynamic Lyapunov Machine Learning Control of Nonlinear Magnetic Levitation System," Energies, MDPI, vol. 15(5), pages 1-16, March.
    14. Ayda Bouhamed & Sarra Missaoui & Amina Ben Ayed & Ahmed Attaoui & Dalel Missaoui & Khawla Jeder & Nesrine Guesmi & Anouar Njeh & Hamadi Khemakhem & Olfa Kanoun, 2024. "A Comprehensive Review of Strategies toward Efficient Flexible Piezoelectric Polymer Composites Based on BaTiO 3 for Next-Generation Energy Harvesting," Energies, MDPI, vol. 17(16), pages 1-35, August.
    15. Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.
    16. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    17. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    18. Wang, Zhen & Fan, Kangqi & Zhao, Shizhong & Wu, Shuxin & Zhang, Xuan & Zhai, Kangjia & Li, Zhiqi & He, Hua, 2024. "Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting," Applied Energy, Elsevier, vol. 356(C).
    19. Janjua, Ahmed Nawaz & Shaefer, Maxwell & Amini, Seyed Hassan & Noble, Aaron & Shahab, Shima, 2024. "Vibrational energy transmission in underground continuous mining: Dynamic characteristics and experimental research of field data," Applied Energy, Elsevier, vol. 354(PA).
    20. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922009497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.