IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924012455.html
   My bibliography  Save this article

A stochastic approach for EV charging stations in demand response programs

Author

Listed:
  • Zanvettor, Giovanni Gino
  • Fochesato, Marta
  • Casini, Marco
  • Lygeros, John
  • Vicino, Antonio

Abstract

Demand response is expected to play a fundamental role in renewable energy communities to alleviate the electricity demand–supply mismatch, especially in the presence of stochastic load and generation. In this paper, we consider an electric vehicle charging station that participates in incentive-based demand response programs. A real-time charging scheme is devised to optimize the charging station operation by coordinating the charging process of the electric vehicles, and complying with the incoming demand response requests. In this context, vehicle demand is assumed uncertain, while demand response requests ask for a change in the charging profile over certain time intervals, in exchange for a monetary reward. By exploiting the probability distributions describing the vehicle charging process, a stochastic formulation is employed to devise a novel charging algorithm aimed at reducing the charging station operational cost. Such a procedure can (i) handle the uncertainty affecting the charging process in different settings and scenarios, and (ii) exploit the information collected in real-time to refine forecasts and hence ensure a higher demand flexibility. Numerical results show that the proposed approach ensures considerable cost reduction compared to the benchmarks, and features highly scalable runtimes.

Suggested Citation

  • Zanvettor, Giovanni Gino & Fochesato, Marta & Casini, Marco & Lygeros, John & Vicino, Antonio, 2024. "A stochastic approach for EV charging stations in demand response programs," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012455
    DOI: 10.1016/j.apenergy.2024.123862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924012455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
    2. Soares, João & Ghazvini, Mohammad Ali Fotouhi & Borges, Nuno & Vale, Zita, 2017. "Dynamic electricity pricing for electric vehicles using stochastic programming," Energy, Elsevier, vol. 122(C), pages 111-127.
    3. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    4. shafiei, Mohammad & Ghasemi-Marzbali, Ali, 2023. "Electric vehicle fast charging station design by considering probabilistic model of renewable energy source and demand response," Energy, Elsevier, vol. 267(C).
    5. Rishabh Ghotge & Yitzhak Snow & Samira Farahani & Zofia Lukszo & Ad van Wijk, 2020. "Optimized Scheduling of EV Charging in Solar Parking Lots for Local Peak Reduction under EV Demand Uncertainty," Energies, MDPI, vol. 13(5), pages 1-18, March.
    6. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    7. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    8. Dong, Chaoyu & Sun, Jianwen & Li, Yanran & Zheng, Yan & Hao, Jianye & Liu, Yang & Jia, Hongjie, 2022. "Hybrid process model and smart policy network of electric-vehicle resources for instantaneous power flow imbalances," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    2. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    3. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    4. Di Silvestre, Maria Luisa & Favuzza, Salvatore & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2018. "How Decarbonization, Digitalization and Decentralization are changing key power infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 483-498.
    5. Stede, Jan & Arnold, Karin & Dufter, Christa & Holtz, Georg & von Roon, Serafin & Richstein, Jörn C., 2020. "The role of aggregators in facilitating industrial demand response: Evidence from Germany," Energy Policy, Elsevier, vol. 147(C).
    6. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    7. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    9. Dranka, Géremi Gilson & Ferreira, Paula, 2020. "Towards a smart grid power system in Brazil: Challenges and opportunities," Energy Policy, Elsevier, vol. 136(C).
    10. Yong, Jin Yi & Tan, Wen Shan & Khorasany, Mohsen & Razzaghi, Reza, 2023. "Electric vehicles destination charging: An overview of charging tariffs, business models and coordination strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    12. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    13. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    14. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
    16. Valdes, Javier & Poque González, Axel Bastián & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2020. "Unveiling the potential for combined heat and power in Chilean industry - A policy perspective," Energy Policy, Elsevier, vol. 140(C).
    17. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    18. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    19. Lavin, Luke & Apt, Jay, 2021. "The importance of peak pricing in realizing system benefits from distributed storage," Energy Policy, Elsevier, vol. 157(C).
    20. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.