IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924013229.html
   My bibliography  Save this article

Enhancing cybersecurity in wind turbines: A resilient reinforcement learning-based optimal control for mitigating FDI attacks

Author

Listed:
  • Mazare, Mahmood
  • Ramezani, Hossein

Abstract

The growing importance of wind energy underscores the critical importance of cybersecurity protocols, especially in identifying vulnerabilities and developing defenses. In particular, False Data Injection (FDI) attacks targeting the communication link between rotor speed sensors and wind turbine (WT) controllers (WT) pose a significant threat and can lead to operational disruptions such as drive train overload and reduced power generation efficiency. In response to these challenges, this study presents an innovative and robust learning-based control framework for WT systems with state constraints. This framework integrates an actor-critic Reinforcement Learning (RL) mechanism with a backstepping approach that utilizes a Barrier Lyapunov Function (BLF) to limit rotor speeds uniformly within a predetermined range to ensure adaptation to a smoothly feasible set. The learning-based control strategy, augmented by backstepping techniques, is formulated using a constrained Hamilton–Jacobi–Bellman (HJB) function. This architecture incorporates adaptive neural network identifiers that enable iterative updates of both actor and critic components. The key advance of this approach lies in its theoretical foundations, which show that the developed elastic scheme guarantees the boundedness of all system states within the predefined compact set. Finally, empirical results from implementation experiments confirm the effectiveness and robustness of the proposed control methodology.

Suggested Citation

  • Mazare, Mahmood & Ramezani, Hossein, 2024. "Enhancing cybersecurity in wind turbines: A resilient reinforcement learning-based optimal control for mitigating FDI attacks," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013229
    DOI: 10.1016/j.apenergy.2024.123939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mazare, Mahmood, 2024. "Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning," Applied Energy, Elsevier, vol. 353(PA).
    2. Kong, Xiaobing & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2023. "Stable feedback linearization-based economic MPC scheme for thermal power plant," Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tenghui & Yang, Jin & Ioannou, Anastasia, 2024. "Data-driven control of wind turbine under online power strategy via deep learning and reinforcement learning," Renewable Energy, Elsevier, vol. 234(C).
    2. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.