IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924002649.html
   My bibliography  Save this article

A mobile node path optimization approach based on Q-learning to defend against cascading failures on static-mobile networks

Author

Listed:
  • Yin, Rongrong
  • Wang, Yumeng
  • Li, Linhui
  • Zhang, Le
  • Hao, Zhenyang
  • Lang, Chun

Abstract

The research on cascading failures in static networks has become relatively mature, and an increasing number of scholars have started to explore the network scenarios where mobile nodes and static nodes coexist. In order to enhance the resilience of static-mobile networks against cascading failures, an algorithm based on Q-learning for optimizing the path of the mobile node is proposed in this paper. This paper proposes a Q-learning-based algorithm for optimizing the path of the mobile node. To achieve this objective, a cascading failure model is established based on sequential interactions between mobile nodes and static nodes in this study. In this model, the motion paths of the mobile node are generated by the Q-learning algorithm. Based on this approach, extensive experiments are conducted, and the results demonstrate the following findings: 1) By increasing the adjustable load parameters of static nodes in the network, the occurrence of cascading failures is delayed, and the frequency of cascading failures is decreased. 2) Increasing the adjustable load parameter, capacity parameter, and network size of static nodes contributes to the network's resilience against cascading failures. 3) As the communication radius of the mobile node increases, the scale of failures in the static network initially increases and then decreases. 4) Different trajectories of the mobile node have a significant impact on network robustness, and paths generated based on Q-learning algorithm exhibit significantly improved network robustness compared to Gaussian-Markov mobility trajectories. The Q-learning algorithm is compared to the Ant Colony Optimization algorithm in terms of execution time, path length, and network robustness, and the Q-learning algorithm demonstrating favorable performance. These experimental results can be valuable for theoretical research on cascading failures in static-mobile networks.

Suggested Citation

  • Yin, Rongrong & Wang, Yumeng & Li, Linhui & Zhang, Le & Hao, Zhenyang & Lang, Chun, 2024. "A mobile node path optimization approach based on Q-learning to defend against cascading failures on static-mobile networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924002649
    DOI: 10.1016/j.chaos.2024.114712
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924002649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, H.J. & Zhao, H. & Wu, J.J., 2008. "A robust matching model of capacity to defense cascading failure on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(25), pages 6431-6435.
    2. Cristopher Moore & M. E. J. Newman, 2000. "Epidemics and Percolation in Small-World Networks," Working Papers 00-01-002, Santa Fe Institute.
    3. Zhang, Lin & Wen, Huiying & Lu, Jian & Lei, Da & Li, Shubin & Ukkusuri, Satish V., 2022. "Exploring cascading reliability of multi-modal public transit network based on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Tian, Meng & Dong, Zhengcheng & Wang, Xianpei, 2021. "Reinforcement learning approach for robustness analysis of complex networks with incomplete information," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Zhao, Yanwei & Wang, Huanqing & Xu, Ning & Zong, Guangdeng & Zhao, Xudong, 2023. "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Volker Turau & Christoph Weyer, 2019. "Cascading failures in complex networks caused by overload attacks," Journal of Heuristics, Springer, vol. 25(6), pages 837-859, December.
    7. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Tu, Haicheng & Xia, Yongxiang & Chen, Xi, 2022. "Vulnerability analysis of cyber physical systems under the false alarm cyber attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    9. Yin, Rongrong & Zhang, Kai & Ma, Xuyao & Wang, Yumeng & Li, Linhui, 2023. "Analysis of cascading failures caused by mobile overload attacks in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    10. Yin, Rong-Rong & Liu, Bin & Liu, Hao-Ran & Li, Ya-Qian, 2014. "The critical load of scale-free fault-tolerant topology in wireless sensor networks for cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 8-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Rongrong & Zhang, Kai & Ma, Xuyao & Wang, Yumeng & Li, Linhui, 2023. "Analysis of cascading failures caused by mobile overload attacks in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    2. Shen, Yi & Yang, Huang & Xie, Yuangcheng & Liu, Yang & Ren, Gang, 2023. "Adaptive robustness optimization against network cascading congestion induced by fluctuant load via a bilateral-adaptive strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Ganjeh-Ghazvini, Mostafa & Masihi, Mohsen & Ghaedi, Mojtaba, 2014. "Random walk–percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 214-221.
    4. Pan, Ya-Nan & Lou, Jing-Jing & Han, Xiao-Pu, 2014. "Outbreak patterns of the novel avian influenza (H7N9)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 265-270.
    5. Chen, Lei & Kou, Yingxin & Li, Zhanwu & Xu, An & Wu, Cheng, 2018. "Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 754-773.
    6. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    8. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Floortje Alkemade & Carolina Castaldi, 2005. "Strategies for the Diffusion of Innovations on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 3-23, February.
    10. Qin, Yang & Zhong, Xiaoxiong & Jiang, Hao & Ye, Yibin, 2015. "An environment aware epidemic spreading model and immune strategy in complex networks," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 206-215.
    11. Velarde, Carlos & Robledo, Alberto, 2021. "Statistical mechanical model for growth and spread of contagions under gauged population confinement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    12. Fu, Xiuwen & Wang, Ye & Yang, Yongsheng & Postolache, Octavian, 2022. "Analysis on cascading reliability of edge-assisted Internet of Things," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. I. Vieira & R. Cheng & P. Harper & V. Senna, 2010. "Small world network models of the dynamics of HIV infection," Annals of Operations Research, Springer, vol. 178(1), pages 173-200, July.
    14. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    15. Sáenz-Royo, Carlos & Lozano-Rojo, Álvaro, 2023. "Authoritarianism versus participation in innovation decisions," Technovation, Elsevier, vol. 124(C).
    16. Vilches, T.N. & Esteva, L. & Ferreira, C.P., 2019. "Disease persistence and serotype coexistence: An expected feature of human mobility," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 161-172.
    17. Tomovski, Igor & Kocarev, Ljupčo, 2015. "Network topology inference from infection statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 272-285.
    18. Kang, Xinyu & Wang, Minxi & Chen, Lu & Li, Xin, 2023. "Supply risk propagation of global copper industry chain based on multi-layer complex network," Resources Policy, Elsevier, vol. 85(PA).
    19. Li, Xun & Cao, Lang, 2016. "Diffusion processes of fragmentary information on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 624-634.
    20. Liang Cao & Shuangyin Liu & Longqin Xu, 2024. "An Intelligent Fault-Tolerant Control Method for a Flexible-Link Manipulator with an Uncertain Dead-Zone and Intermittent Actuator Faults," Mathematics, MDPI, vol. 12(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924002649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.