IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v144y2021ics0960077920310341.html
   My bibliography  Save this article

Reinforcement learning approach for robustness analysis of complex networks with incomplete information

Author

Listed:
  • Tian, Meng
  • Dong, Zhengcheng
  • Wang, Xianpei

Abstract

Network robustness against sequential attacks is significant for complex networks. However, it is generally assumed that complete information of complex networks is obtained and arbitrary nodes can be removed in previous researches. In this paper, a sequential attack in complex networks is modeled as a partial observable Markov decision process (POMDP). Then a reinforcement learning (RL) approach for POMDP is proposed to analyze dynamical robustness of complex networks under sequential attacks, when information of networks is incomplete. According to this approach, an agent can learn to take action by exploiting experiences. To solve the problem of large state space in complex networks, deep Q-network algorithm is used to identify most damaging sequential attacks, as deep neural networks can build up progressively abstract representations of state space of complex networks. The performances of proposed approach are analyzed on scale-free networks and small-world networks. According to the numerical simulations, it is found that the RL-based sequential attacks perform better when load distributions are more heterogeneous and local connections are more significant. Furthermore, it is shown that increasing the proportions of observed and attacked nodes improves the performance of RL-based sequential attacks. Finally, the results are verified on the IEEE 300-bus system and the simulation results highlight the damages caused by RL-based sequential attacks.

Suggested Citation

  • Tian, Meng & Dong, Zhengcheng & Wang, Xianpei, 2021. "Reinforcement learning approach for robustness analysis of complex networks with incomplete information," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077920310341
    DOI: 10.1016/j.chaos.2020.110643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920310341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    2. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    3. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    4. Nie, Tingyuan & Guo, Zheng & Zhao, Kun & Lu, Zhe-Ming, 2015. "New attack strategies for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 248-253.
    5. Jiang, Zhong-Yuan & Liu, Zhi-Quan & He, Xuan & Ma, Jian-Feng, 2018. "Cascade phenomenon against subsequent failures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 472-480.
    6. Pu, Cun-Lai & Cui, Wei, 2015. "Vulnerability of complex networks under path-based attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 622-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tu, Haicheng & Xia, Yongxiang & Chen, Xi, 2022. "Vulnerability analysis of cyber physical systems under the false alarm cyber attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    2. Mazare, Mahmood, 2024. "Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning," Applied Energy, Elsevier, vol. 353(PA).
    3. Yin, Rongrong & Wang, Yumeng & Li, Linhui & Zhang, Le & Hao, Zhenyang & Lang, Chun, 2024. "A mobile node path optimization approach based on Q-learning to defend against cascading failures on static-mobile networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Zhao, Yanwei & Wang, Huanqing & Xu, Ning & Zong, Guangdeng & Zhao, Xudong, 2023. "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Tu, Haicheng & Gu, Fengqiang & Zhang, Xi & Xia, Yongxiang, 2023. "Robustness analysis of power system under sequential attacks with incomplete information," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lekha, Divya Sindhu & Balakrishnan, Kannan, 2020. "Central attacks in complex networks: A revisit with new fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    2. Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Edge attack strategies in interdependent scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    4. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    5. Wang, Jianwei & Wang, Siyuan & Wang, Ziwei, 2022. "Robustness of spontaneous cascading dynamics driven by reachable area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    6. Bellingeri, M. & Bevacqua, D. & Scotognella, F. & LU, Zhe-Ming & Cassi, D., 2018. "Efficacy of local attack strategies on the Beijing road complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 316-328.
    7. Jisha Mariyam John & Michele Bellingeri & Divya Sindhu Lekha & Davide Cassi & Roberto Alfieri, 2024. "Robustness of Real-World Networks after Weight Thresholding with Strong Link Removal," Mathematics, MDPI, vol. 12(10), pages 1-16, May.
    8. Nie, Tingyuan & Fan, Bo & Wang, Zhenhao, 2022. "Complexity and robustness of weighted circuit network of placement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    9. Tu, Haicheng & Gu, Fengqiang & Zhang, Xi & Xia, Yongxiang, 2023. "Robustness analysis of power system under sequential attacks with incomplete information," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Yang, Yu & He, Ze & Song, Zouying & Fu, Xin & Wang, Jianwei, 2018. "Investigation on structural and spatial characteristics of taxi trip trajectory network in Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 755-766.
    11. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    12. Bellingeri, Michele & Cassi, Davide, 2018. "Robustness of weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 47-55.
    13. Massimiliano Turchetto & Michele Bellingeri & Roberto Alfieri & Ngoc-Kim-Khanh Nguyen & Quang Nguyen & Davide Cassi, 2023. "Random Walks-Based Node Centralities to Attack Complex Networks," Mathematics, MDPI, vol. 11(23), pages 1-20, November.
    14. Jisha Mariyam John & Michele Bellingeri & Divya Sindhu Lekha & Davide Cassi & Roberto Alfieri, 2023. "Effect of Weight Thresholding on the Robustness of Real-World Complex Networks to Central Node Attacks," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    15. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    17. Zhang, Haihong & Wu, Wenqing & Zhao, Liming, 2016. "A study of knowledge supernetworks and network robustness in different business incubators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 545-560.
    18. Yang, Shenhao & Chen, Weirong & Zhang, Xuexia & Yang, Weiqi, 2021. "A Graph-based Method for Vulnerability Analysis of Renewable Energy integrated Power Systems to Cascading Failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    19. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    20. Tianle Pu & Li Zeng & Chao Chen, 2024. "Deep Reinforcement Learning for Network Dismantling: A K-Core Based Approach," Mathematics, MDPI, vol. 12(8), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077920310341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.