IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923012552.html
   My bibliography  Save this article

Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm

Author

Listed:
  • Song, Dongran
  • Shen, Xutao
  • Gao, Yang
  • Wang, Lei
  • Du, Xin
  • Xu, Zhiliang
  • Zhang, Zhihong
  • Huang, Chaoneng
  • Yang, Jian
  • Dong, Mi
  • Joo, Young Hoo

Abstract

The wake in a large-scale Floating Offshore Wind Farm (FOWF) can reduce the wind speed in downstream areas, thereby affecting and reducing the power production of FOWF. To maximize the power production of the FOWF, it is necessary to solve the power optimization problem and obtain the optimal control actions for the coordinated operation of wind turbines. Due to the complexity of the optimization problem, there remains difficulty in applying swarm intelligence algorithms, and thus we propose a dimensionality reduction-based surrogate-assisted framework. Firstly, a low-dimensional surrogate model is constructed using data generated by swarm intelligence algorithms and dimensionality reduction algorithms during the optimization process. Secondly, based on the low-dimensional surrogate model, multi-subswarms pre-screening is carried out to filter out poor solutions in the population and reduce the time consumption of calculating the objective function. Thirdly, the trust region range is determined and a local surrogate model is constructed for multiple local searches using the results of the multi-subswarms pre-screening, and the elite individuals obtained further guide the population individuals to search for optimization, improving the optimization efficiency of the algorithm. Finally, the proposed method is simulated and verified in a FOWF with 64 wind turbines. Under the wind direction where the wake effect is severe, the steady-state power production can be increased by more than 6%. Compared with conventional swarm intelligence algorithms and numerical solution methods, the proposed method produces more power while having smaller time cost under different wind conditions.

Suggested Citation

  • Song, Dongran & Shen, Xutao & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Huang, Chaoneng & Yang, Jian & Dong, Mi & Joo, Young Hoo, 2023. "Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012552
    DOI: 10.1016/j.apenergy.2023.121891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Huan & Li, Peikun & Gu, Wei, 2020. "A data-driven evolutionary algorithm for wind farm layout optimization," Energy, Elsevier, vol. 208(C).
    2. Guo-Wei Qian & Takeshi Ishihara, 2018. "A New Analytical Wake Model for Yawed Wind Turbines," Energies, MDPI, vol. 11(3), pages 1-24, March.
    3. Gionfra, Nicolò & Sandou, Guillaume & Siguerdidjane, Houria & Faille, Damien & Loevenbruck, Philippe, 2019. "Wind farm distributed PSO-based control for constrained power generation maximization," Renewable Energy, Elsevier, vol. 133(C), pages 103-117.
    4. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    5. Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).
    6. Tang, Jia & Wang, Dan & Wang, Xuyang & Jia, Hongjie & Wang, Chengshan & Huang, Renle & Yang, Zhanyong & Fan, Menghua, 2017. "Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques," Applied Energy, Elsevier, vol. 204(C), pages 143-162.
    7. Gao, Xiaoxia & Chen, Yao & Xu, Shinai & Gao, Wei & Zhu, Xiaoxun & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Lu, Hao, 2022. "Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements," Applied Energy, Elsevier, vol. 307(C).
    8. Wim Munters & Johan Meyers, 2018. "Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization," Energies, MDPI, vol. 11(1), pages 1-32, January.
    9. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    10. Qian, Guo-Wei & Ishihara, Takeshi, 2021. "Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity," Energy, Elsevier, vol. 220(C).
    11. Duan, Lei & Sun, Qinghong & He, Zanyang & Li, Gen, 2022. "Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Shu, Tong & Song, Dongran & Joo, Young Hoon, 2022. "Non-centralised coordinated optimisation for maximising offshore wind farm power via a sparse communication architecture," Applied Energy, Elsevier, vol. 324(C).
    3. Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
    4. Wang, Tengyuan & Cai, Chang & Liu, Junbo & Peng, Chaoyi & Wang, Yibo & Sun, Xiangyu & Zhong, Xiaohui & Zhang, Jingjing & Li, Qingan, 2024. "Wake characteristics and vortex structure evolution of floating offshore wind turbine under surge motion," Energy, Elsevier, vol. 302(C).
    5. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    6. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    7. Chen, Zhenyu & Lin, Zhongwei & Zhai, Xiaoya & Liu, Jizhen, 2022. "Dynamic wind turbine wake reconstruction: A Koopman-linear flow estimator," Energy, Elsevier, vol. 238(PB).
    8. Mou Lin & Fernando Porté-Agel, 2023. "Power Production and Blade Fatigue of a Wind Turbine Array Subjected to Active Yaw Control," Energies, MDPI, vol. 16(6), pages 1-17, March.
    9. Xiaodong Wang & Zhaoliang Ye & Shun Kang & Hui Hu, 2019. "Investigations on the Unsteady Aerodynamic Characteristics of a Horizontal-Axis Wind Turbine during Dynamic Yaw Processes," Energies, MDPI, vol. 12(16), pages 1-23, August.
    10. Zhiwen Deng & Chang Xu & Zhihong Huo & Xingxing Han & Feifei Xue, 2023. "Yaw Optimisation for Wind Farm Production Maximisation Based on a Dynamic Wake Model," Energies, MDPI, vol. 16(9), pages 1-20, May.
    11. Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
    12. Xiaoxia, Gao & Luqing, Li & Shaohai, Zhang & Xiaoxun, Zhu & Haiying, Sun & Hongxing, Yang & Yu, Wang & Hao, Lu, 2022. "LiDAR-based observation and derivation of large-scale wind turbine's wake expansion model downstream of a hill," Energy, Elsevier, vol. 259(C).
    13. Shu, Tong & Song, Dongran & Hoon Joo, Young, 2022. "Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph," Applied Energy, Elsevier, vol. 306(PA).
    14. Wen, Jiahao & Zhou, Lei & Zhang, Hongfu, 2023. "Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 263(PA).
    15. Zhang, Shaohai & Gao, Xiaoxia & Ma, Wanli & Lu, Hongkun & Lv, Tao & Xu, Shinai & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu, 2023. "Derivation and verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function," Renewable Energy, Elsevier, vol. 215(C).
    16. Jim Kuo & Kevin Pan & Ni Li & He Shen, 2020. "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, MDPI, vol. 13(4), pages 1-15, February.
    17. Song, Dongran & Yan, Jiaqi & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Yang, Jian & Dong, Mi & Chen, Yang, 2023. "Optimization of floating wind farm power collection system using a novel two-layer hybrid method," Applied Energy, Elsevier, vol. 348(C).
    18. Shibuya, Koichiro & Uchida, Takanori, 2023. "Wake asymmetry of yaw state wind turbines induced by interference with wind towers," Energy, Elsevier, vol. 280(C).
    19. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    20. Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.