An efficient solution for large offshore wind farm power optimization with the Porté-Agel wake model: Optimality and efficiency
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132444
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yanfang Chen & Young Hoon Joo & Dongran Song, 2022. "Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation," Energies, MDPI, vol. 15(7), pages 1-24, March.
- Doekemeijer, Bart M. & van der Hoek, Daan & van Wingerden, Jan-Willem, 2020. "Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions," Renewable Energy, Elsevier, vol. 156(C), pages 719-730.
- Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
- Dou, Bingzheng & Qu, Timing & Lei, Liping & Zeng, Pan, 2020. "Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model," Energy, Elsevier, vol. 209(C).
- Javier Serrano González & Bruno López & Martín Draper, 2021. "Optimal Pitch Angle Strategy for Energy Maximization in Offshore Wind Farms Considering Gaussian Wake Model," Energies, MDPI, vol. 14(4), pages 1-18, February.
- Shu, Tong & Song, Dongran & Hoon Joo, Young, 2022. "Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph," Applied Energy, Elsevier, vol. 306(PA).
- Song, Dongran & Shen, Xutao & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Huang, Chaoneng & Yang, Jian & Dong, Mi & Joo, Young Hoo, 2023. "Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm," Applied Energy, Elsevier, vol. 351(C).
- Shu, Tong & Song, Dongran & Joo, Young Hoon, 2022. "Non-centralised coordinated optimisation for maximising offshore wind farm power via a sparse communication architecture," Applied Energy, Elsevier, vol. 324(C).
- Gionfra, Nicolò & Sandou, Guillaume & Siguerdidjane, Houria & Faille, Damien & Loevenbruck, Philippe, 2019. "Wind farm distributed PSO-based control for constrained power generation maximization," Renewable Energy, Elsevier, vol. 133(C), pages 103-117.
- Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
- Wang, Qiang & Luo, Kun & Wu, Chunlei & Zhu, Zhaofan & Fan, Jianren, 2022. "Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production," Energy, Elsevier, vol. 241(C).
- Qian, Guo-Wei & Ishihara, Takeshi, 2021. "Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity," Energy, Elsevier, vol. 220(C).
- Yanfang Chen & Young-Hoon Joo & Dongran Song, 2021. "Modified Beetle Annealing Search (BAS) Optimization Strategy for Maxing Wind Farm Power through an Adaptive Wake Digraph Clustering Approach," Energies, MDPI, vol. 14(21), pages 1-24, November.
- Jim Kuo & Kevin Pan & Ni Li & He Shen, 2020. "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, MDPI, vol. 13(4), pages 1-15, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tong Shu & Young Hoon Joo, 2023. "Non-Centralised Balance Dispatch Strategy in Waked Wind Farms through a Graph Sparsification Partitioning Approach," Energies, MDPI, vol. 16(20), pages 1-21, October.
- Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
- Shu, Tong & Song, Dongran & Joo, Young Hoon, 2022. "Non-centralised coordinated optimisation for maximising offshore wind farm power via a sparse communication architecture," Applied Energy, Elsevier, vol. 324(C).
- Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).
- Zhiwen Deng & Chang Xu & Zhihong Huo & Xingxing Han & Feifei Xue, 2023. "Yaw Optimisation for Wind Farm Production Maximisation Based on a Dynamic Wake Model," Energies, MDPI, vol. 16(9), pages 1-20, May.
- Kim, Taewan & Kim, Changwook & Song, Jeonghwan & You, Donghyun, 2024. "Optimal control of a wind farm in time-varying wind using deep reinforcement learning," Energy, Elsevier, vol. 303(C).
- Song, Dongran & Shen, Xutao & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Huang, Chaoneng & Yang, Jian & Dong, Mi & Joo, Young Hoo, 2023. "Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm," Applied Energy, Elsevier, vol. 351(C).
- Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
- Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
- Zhu, Xiaoxun & Chen, Yao & Xu, Shinai & Zhang, Shaohai & Gao, Xiaoxia & Sun, Haiying & Wang, Yu & Zhao, Fei & Lv, Tiancheng, 2023. "Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification," Energy, Elsevier, vol. 270(C).
- Chen, Zhenyu & Lin, Zhongwei & Zhai, Xiaoya & Liu, Jizhen, 2022. "Dynamic wind turbine wake reconstruction: A Koopman-linear flow estimator," Energy, Elsevier, vol. 238(PB).
- He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
- Shu, Tong & Song, Dongran & Hoon Joo, Young, 2022. "Decentralised optimisation for large offshore wind farms using a sparsified wake directed graph," Applied Energy, Elsevier, vol. 306(PA).
- Yang, Shanghui & Deng, Xiaowei & Yang, Kun, 2024. "Machine-learning-based wind farm optimization through layout design and yaw control," Renewable Energy, Elsevier, vol. 224(C).
- Zhang, Yubao & Chen, Xin & Gong, Sumei & Chen, Jiehao, 2023. "Collective large-scale wind farm multivariate power output control based on hierarchical communication multi-agent proximal policy optimization," Renewable Energy, Elsevier, vol. 219(P2).
- Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Li, Xia & Xu, Li & Cai, Jingjing & Peng, Cheng & Bian, Xiaoyan, 2024. "Offshore wind turbine selection with multi-criteria decision-making techniques involving D numbers and squeeze adversarial interpretive structural modeling method," Applied Energy, Elsevier, vol. 368(C).
- He, Ruiyang & Yang, Hongxing & Lu, Lin & Gao, Xiaoxia, 2024. "Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms," Renewable Energy, Elsevier, vol. 225(C).
- Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
More about this item
Keywords
Large offshore wind farm; Distributed optimization; Wake effects; Nonconvex problem; Parameter calibration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022187. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.