IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923012400.html
   My bibliography  Save this article

Unlocking synergies between seawater desalination and saline gradient energy: Assessing the environmental and economic benefits for dual water and energy production

Author

Listed:
  • Mendoza-Zapata, Luis
  • Maturana-Córdoba, Aymer
  • Mejía-Marchena, Ricardo
  • Cala, Anggie
  • Soto-Verjel, Joseph
  • Villamizar, Salvador

Abstract

The global scarcity of fresh water has increased the desalination systems' importance. Although these systems face certain limitations, significant efforts are being made using renewable energy sources like Saline Gradient Energy (SGE). This led to the emergence of two technologies: Pressure Retarded Osmosis (PRO) and Reversal Electrodialysis (RED). Hence, this innovative study aims to contrast the potential environmental and economic benefits by performance of PRO and RED integration into desalinating seawater by Reverse Osmosis (SWRO). We comprehensively assessed their life cycle using SimaPro® software and conducted a stochastic economic evaluation to achieve this. For the calculation basis, the systems were dimensioned using Wave® software and theoretical-analytical methods based on technical literature. Our findings revealed SWRO-PRO is cheaper (1.49 USD/m3), less energy-intensive (4.602 kWh/m3), and more environmentally friendly than SWRO (emission reductions in the following categories: 10.31% human health, 11.79% ecosystem quality, and 11.44% natural resources depletion). SWRO was the second-best option with moderate costs (1.53 USD/m3), energy requirement (5.569 kWh/m3), and environmental impacts, while SWRO-RED was the least favorable, with higher costs (1.83 USD/m3), energy consumption (5.573 kWh/m3), and environmental impacts (increases of 22.20%, 21.02%, 15.2%, 22.2% of mentioned categories, respectively). PRO integration represented an enhancement, and despite lower benefits, RED maintains a substantial future potential. Thus, this study is a unique holistic approach that integrates environmental and economic considerations and endeavors to revolutionize our understanding of synergistic water-energy systems. Therefore, this pioneering research could pave the way to address global water scarcity and clean energy challenges.

Suggested Citation

  • Mendoza-Zapata, Luis & Maturana-Córdoba, Aymer & Mejía-Marchena, Ricardo & Cala, Anggie & Soto-Verjel, Joseph & Villamizar, Salvador, 2023. "Unlocking synergies between seawater desalination and saline gradient energy: Assessing the environmental and economic benefits for dual water and energy production," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012400
    DOI: 10.1016/j.apenergy.2023.121876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
    2. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    3. Jia, Zhijun & Wang, Baoguo & Song, Shiqiang & Fan, Yongsheng, 2014. "Blue energy: Current technologies for sustainable power generation from water salinity gradient," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 91-100.
    4. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Alvarez-Silva, Oscar & Osorio, Andrés F., 2015. "Salinity gradient energy potential in Colombia considering site specific constraints," Renewable Energy, Elsevier, vol. 74(C), pages 737-748.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewaoche John Okampo & Nnamdi Nwulu & Pitshou N. Bokoro, 2022. "Economic and Reliability Assessment of Hybrid PRO-RO Desalination Systems Using Brine for Salinity Gradient Energy Production," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    2. Etzaguery Marin-Coria & Rodolfo Silva & Cecilia Enriquez & M. Luisa Martínez & Edgar Mendoza, 2021. "Environmental Assessment of the Impacts and Benefits of a Salinity Gradient Energy Pilot Plant," Energies, MDPI, vol. 14(11), pages 1-24, June.
    3. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    4. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    5. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    6. Hipólito-Valencia, Brígido J. & Mosqueda-Jiménez, Francisco Waldemar & Barajas-Fernández, Juan & Ponce-Ortega, José M., 2021. "Incorporating a seawater desalination scheme in the optimal water use in agricultural activities," Agricultural Water Management, Elsevier, vol. 244(C).
    7. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    8. Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).
    9. Foroogh Nazari Chamaki & Glenn P. Jenkins & Majid Hashemipour, 2023. "Financial, Economic, and Environmental Analyses of Upgrading Reverse Osmosis Plant Fed with Treated Wastewater," Energies, MDPI, vol. 16(7), pages 1-23, April.
    10. Wu, Xi & Zhang, Xinjie & Xu, Shiming & Gong, Ying & Yang, Shuaishuai & Jin, Dongxu, 2021. "Performance of a reverse electrodialysis cell working with potassium acetate−methanol−water solution," Energy, Elsevier, vol. 232(C).
    11. Bar-Nahum, Ziv & Reznik, Ami & Finkelshtain, Israel & Kan, Iddo, 2022. "Centralized water management under lobbying: Economic analysis of desalination in Israel," Ecological Economics, Elsevier, vol. 193(C).
    12. Michael Papapetrou & George Kosmadakis & Francesco Giacalone & Bartolomé Ortega-Delgado & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2019. "Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System," Energies, MDPI, vol. 12(17), pages 1-26, August.
    13. Simon Lineykin & Abhishek Sharma & Moshe Averbukh, 2023. "Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea," Energies, MDPI, vol. 16(11), pages 1-17, May.
    14. Gabriela Scheibel Cassol & Chii Shang & Alicia Kyoungjin An & Noman Khalid Khanzada & Francesco Ciucci & Alessandro Manzotti & Paul Westerhoff & Yinghao Song & Li Ling, 2024. "Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2021. "Implementing the dynamic simulation approach for the design and optimization of ships energy systems: Methodology and applicability to modern cruise ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. David D. J. Antia, 2023. "Desalination of Saline Irrigation Water Using Hydrophobic, Metal–Polymer Hydrogels," Sustainability, MDPI, vol. 15(9), pages 1-32, April.
    17. Rafał Figaj & Maciej Żołądek & Maksymilian Homa & Anna Pałac, 2022. "A Novel Hybrid Polygeneration System Based on Biomass, Wind and Solar Energy for Micro-Scale Isolated Communities," Energies, MDPI, vol. 15(17), pages 1-33, August.
    18. Minh N. Nguyen & Melinda L. Jue & Steven F. Buchsbaum & Sei Jin Park & Florian Vollnhals & Silke Christiansen & Francesco Fornasiero & Andrea I. Schäfer, 2024. "Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    20. Mahmoudi, Ali & Bostani, Mohammad & Rashidi, Saman & Valipour, Mohammad Sadegh, 2023. "Challenges and opportunities of desalination with renewable energy resources in Middle East countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.