IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2024i3p43-851d1428862.html
   My bibliography  Save this article

Energy and Exergy Analyses of an Innovative Heat Recovery System from the LNG Regasification Process in Green Ships

Author

Listed:
  • Roberto Bruno

    (Mechanical, Energy and Management Engineering Department, University of Calabria, 87036 Rende, Italy)

  • Vittorio Ferraro

    (Department of Computer Engineering, Modelling, Electronics and Systems, University of Calabria, 87036 Rende, Italy)

  • Piofrancesco Barone

    (Mechanical, Energy and Management Engineering Department, University of Calabria, 87036 Rende, Italy)

  • Piero Bevilacqua

    (Mechanical, Energy and Management Engineering Department, University of Calabria, 87036 Rende, Italy)

Abstract

Despite being stored at 113 K and at atmospheric pressure, LNG cold potential is not exploited to reduce green ships’ energy needs. An innovative system based on three organic Rankine cycles integrated into the regasification equipment is proposed to produce additional power and recover cooling energy from condensers. A first-law analysis identified ethylene and ethane as suitable working fluids for the first and the second ORC, making freshwater and ice available. Propane, ammonia and propylene could be arbitrarily employed in the third ORC for air conditioning. An environmental analysis that combines exergy efficiency, ecological indices and hazard aspects for the marine environment and ship passengers indicated propylene as safer and more environmentally friendly. Exergy analysis confirmed that more than 20% of the LNG potential can be recovered from every cycle to produce a net clean power of 76 kW, whereas 270 kW can be saved by recovering condensers’ cooling power to satisfy some ship needs. Assuming the sailing mode, a limitation of 162 kg in LNG consumptions was determined, avoiding the emission of 1584 kg of CO 2 per day. Marine thermal pollution is reduced by 3.5 times by recovering the working fluids’ condensation heat for the LNG pre-heating.

Suggested Citation

  • Roberto Bruno & Vittorio Ferraro & Piofrancesco Barone & Piero Bevilacqua, 2024. "Energy and Exergy Analyses of an Innovative Heat Recovery System from the LNG Regasification Process in Green Ships," Clean Technol., MDPI, vol. 6(3), pages 1-26, July.
  • Handle: RePEc:gam:jcltec:v:6:y:2024:i:3:p:43-851:d:1428862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/3/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/3/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Fanglong & Lu, Wang & Ji, Hui & Nie, Songlin & Ma, Zhonghai & Yan, Xiaopeng, 2024. "Multi-objective optimization and energy efficiency improvement for rotor duct in integrated energy recovery-pressure boost device," Energy, Elsevier, vol. 300(C).
    2. Hipólito-Valencia, Brígido J. & Mosqueda-Jiménez, Francisco Waldemar & Barajas-Fernández, Juan & Ponce-Ortega, José M., 2021. "Incorporating a seawater desalination scheme in the optimal water use in agricultural activities," Agricultural Water Management, Elsevier, vol. 244(C).
    3. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    4. Foroogh Nazari Chamaki & Glenn P. Jenkins & Majid Hashemipour, 2023. "Financial, Economic, and Environmental Analyses of Upgrading Reverse Osmosis Plant Fed with Treated Wastewater," Energies, MDPI, vol. 16(7), pages 1-23, April.
    5. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
    6. Mayuki Cabrera-González & Fernando Ramonet & Michael Harasek, 2022. "Development of a Model for the Implementation of the Circular Economy in Desert Coastal Regions," Land, MDPI, vol. 11(9), pages 1-17, September.
    7. Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada, 2021. "Deep learning-based energy management of a hybrid photovoltaic-reverse osmosis-pressure retarded osmosis system," Applied Energy, Elsevier, vol. 293(C).
    8. Bar-Nahum, Ziv & Reznik, Ami & Finkelshtain, Israel & Kan, Iddo, 2022. "Centralized water management under lobbying: Economic analysis of desalination in Israel," Ecological Economics, Elsevier, vol. 193(C).
    9. Bin Huang & Kexin Pu & Peng Wu & Dazhuan Wu & Jianxing Leng, 2020. "Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review," Energies, MDPI, vol. 13(16), pages 1-19, August.
    10. Zolghadr-Asli, Babak & McIntyre, Neil & Djordjevic, Slobodan & Farmani, Raziyeh & Pagliero, Liliana, 2023. "The sustainability of desalination as a remedy to the water crisis in the agriculture sector: An analysis from the climate-water-energy-food nexus perspective," Agricultural Water Management, Elsevier, vol. 286(C).
    11. Roggenburg, Michael & Warsinger, David M. & Bocanegra Evans, Humberto & Castillo, Luciano, 2021. "Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination," Applied Energy, Elsevier, vol. 291(C).
    12. Simon Lineykin & Abhishek Sharma & Moshe Averbukh, 2023. "Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea," Energies, MDPI, vol. 16(11), pages 1-17, May.
    13. Gabriela Scheibel Cassol & Chii Shang & Alicia Kyoungjin An & Noman Khalid Khanzada & Francesco Ciucci & Alessandro Manzotti & Paul Westerhoff & Yinghao Song & Li Ling, 2024. "Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Song, Daiwang & Zhou, Jie & Wang, Shenghui & Wang, Chengpeng & Liu, Sihan & Zhang, Yin & Tian, Lin & Xiao, Yexiang, 2023. "Adaptability evaluation of piston type high pressure pump integrated with energy recovery device through the numerical simulation and one year's island desalination," Energy, Elsevier, vol. 262(PA).
    15. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    16. David D. J. Antia, 2023. "Desalination of Saline Irrigation Water Using Hydrophobic, Metal–Polymer Hydrogels," Sustainability, MDPI, vol. 15(9), pages 1-32, April.
    17. Qasem, Naef A.A. & Zubair, Syed M. & Abdallah, Ayman M. & Elbassoussi, Muhammad H. & Ahmed, Mohamed A., 2020. "Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system," Applied Energy, Elsevier, vol. 263(C).
    18. Minh N. Nguyen & Melinda L. Jue & Steven F. Buchsbaum & Sei Jin Park & Florian Vollnhals & Silke Christiansen & Francesco Fornasiero & Andrea I. Schäfer, 2024. "Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Mendoza-Zapata, Luis & Maturana-Córdoba, Aymer & Mejía-Marchena, Ricardo & Cala, Anggie & Soto-Verjel, Joseph & Villamizar, Salvador, 2023. "Unlocking synergies between seawater desalination and saline gradient energy: Assessing the environmental and economic benefits for dual water and energy production," Applied Energy, Elsevier, vol. 351(C).
    20. Gyung-Geun Oh & Eunchae Do & Sungwon Kang & Weonjae Kim & Sung Soo Yoo & Jeong-Hee Kang, 2024. "A Wet Scrubber and Electrooxidation System for the Efficient Removal of Odor: A Bench-Scale Study," Sustainability, MDPI, vol. 16(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:3:p:43-851:d:1428862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.