IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v244y2021ics0378377420320990.html
   My bibliography  Save this article

Incorporating a seawater desalination scheme in the optimal water use in agricultural activities

Author

Listed:
  • Hipólito-Valencia, Brígido J.
  • Mosqueda-Jiménez, Francisco Waldemar
  • Barajas-Fernández, Juan
  • Ponce-Ortega, José M.

Abstract

Seawater desalination process is analyzed in this paper as an option for reducing the groundwater usage of overexploited aquifers in irrigated agriculture. The proposed approach is based on a new superstructure formulated as a multiobjective mixed integer nonlinear programming model, where power requirements of the desalination process and agriculture activity are supplied by an integrated steam Rankine cycle fed of solar energy and fossil fuels. The multiobjective function includes the minimization of the groundwater consumption and the minimization of the total annual cost; this cost is divided into the capital cost which consists of the catchment area, desalination process, power cycle and pumps, as well as the operating costs for pumping, fossil fuels, groundwater and desalinated seawater. A case study for the state of Sonora in Mexico was considered to show the applicability of the proposed approach. Results show that the maximum saving for groundwater consumption is about 66% with the proposed method.

Suggested Citation

  • Hipólito-Valencia, Brígido J. & Mosqueda-Jiménez, Francisco Waldemar & Barajas-Fernández, Juan & Ponce-Ortega, José M., 2021. "Incorporating a seawater desalination scheme in the optimal water use in agricultural activities," Agricultural Water Management, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320990
    DOI: 10.1016/j.agwat.2020.106552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420320990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    2. Huang, Y. & Li, Y.P. & Chen, X. & Ma, Y.G., 2012. "Optimization of the irrigation water resources for agricultural sustainability in Tarim River Basin, China," Agricultural Water Management, Elsevier, vol. 107(C), pages 74-85.
    3. Sun, J. & Li, Y.P. & Suo, C. & Liu, Y.R., 2019. "Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia," Agricultural Water Management, Elsevier, vol. 216(C), pages 76-88.
    4. Bataineh, Khaled M., 2016. "Optimization analysis of solar thermal water pump," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 603-613.
    5. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    6. Arredondo-Ramírez, Karla & Rubio-Castro, Eusiel & Nápoles-Rivera, Fabricio & Ponce-Ortega, José María & Serna-González, Medardo & El-Halwagi, Mahmoud M., 2015. "Optimal design of agricultural water systems with multiperiod collection, storage, and distribution," Agricultural Water Management, Elsevier, vol. 152(C), pages 161-172.
    7. Mata-Torres, Carlos & Escobar, Rodrigo A. & Cardemil, José M. & Simsek, Yeliz & Matute, José A., 2017. "Solar polygeneration for electricity production and desalination: Case studies in Venezuela and northern Chile," Renewable Energy, Elsevier, vol. 101(C), pages 387-398.
    8. Pujades, Estanislao & Orban, Philippe & Bodeux, Sarah & Archambeau, Pierre & Erpicum, Sébastien & Dassargues, Alain, 2017. "Underground pumped storage hydropower plants using open pit mines: How do groundwater exchanges influence the efficiency?," Applied Energy, Elsevier, vol. 190(C), pages 135-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Funk, Bryana & Amer, Saud A. & Ward, Frank A., 2023. "Sustainable aquifer management for food security," Agricultural Water Management, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    2. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    3. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    4. Portilla-Paveri, Manuel & Cariaga, Denise & Negrete-Pincetic, Matías & Lorca, Álvaro & Anjos, Miguel F., 2024. "A long-term generation and transmission expansion planning model considering desalination flexibility and coordination: A Chilean case study," Applied Energy, Elsevier, vol. 371(C).
    5. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    6. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    7. R. Roozbahani & B. Abbasi & S. Schreider, 2015. "Optimal allocation of water to competing stakeholders in a shared watershed," Annals of Operations Research, Springer, vol. 229(1), pages 657-676, June.
    8. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    9. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    10. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    11. Wang, Xipan & Song, Junnian & Xing, Jiahao & Duan, Haiyan & Wang, Xian'en, 2022. "System nexus consolidates coupling of regional water and energy efficiencies," Energy, Elsevier, vol. 256(C).
    12. Wu, X.D. & Chen, G.Q., 2017. "Energy and water nexus in power generation: The surprisingly high amount of industrial water use induced by solar power infrastructure in China," Applied Energy, Elsevier, vol. 195(C), pages 125-136.
    13. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    14. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    15. Estanislao Pujades & Philippe Orban & Pierre Archambeau & Vasileios Kitsikoudis & Sebastien Erpicum & Alain Dassargues, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow," Energies, MDPI, vol. 13(9), pages 1-21, May.
    16. Roberto Bruno & Vittorio Ferraro & Piofrancesco Barone & Piero Bevilacqua, 2024. "Energy and Exergy Analyses of an Innovative Heat Recovery System from the LNG Regasification Process in Green Ships," Clean Technol., MDPI, vol. 6(3), pages 1-26, July.
    17. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    18. Wang, Saige & Liu, Yating & Chen, Bin, 2018. "Multiregional input–output and ecological network analyses for regional energy–water nexus within China," Applied Energy, Elsevier, vol. 227(C), pages 353-364.
    19. Foroogh Nazari Chamaki & Glenn P. Jenkins & Majid Hashemipour, 2023. "Financial, Economic, and Environmental Analyses of Upgrading Reverse Osmosis Plant Fed with Treated Wastewater," Energies, MDPI, vol. 16(7), pages 1-23, April.
    20. Moazeni, Faegheh & Khazaei, Javad, 2021. "Optimal design and operation of an islanded water-energy network including a combined electrodialysis-reverse osmosis desalination unit," Renewable Energy, Elsevier, vol. 167(C), pages 395-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:244:y:2021:i:c:s0378377420320990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.