IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4272-d1153739.html
   My bibliography  Save this article

Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea

Author

Listed:
  • Simon Lineykin

    (Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 40700, Israel)

  • Abhishek Sharma

    (Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248002, India)

  • Moshe Averbukh

    (Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel)

Abstract

Currently, the Israeli energy industry faces the challenge of a considerable increase in solar electricity production. As a relatively isolated system, the significant expansion of solar electricity may cause problems with electricity quality. Electrical storage installation can resolve this problem. In Israel’s situation, the optimal solution could be the creation of a channel between the Mediterranean and the Dead Sea. The channel can solve three closely related problems: the increased production of desalinated water for domestic, industrial, and agricultural needs; the prevention of a permanent Dead Sea level decline and its imminent disappearance; the development of hydro-pumping electrical storage stations; and the creation of numerous PV facilities in the Negev area for national electricity generation. However, detailed analysis should be conducted for the estimation of the possible increase in solar electric generation with consideration of a stochastic PV outcome and the potential ability to use the Dead Sea for the brine discharge of electrical hydro-storage plants.

Suggested Citation

  • Simon Lineykin & Abhishek Sharma & Moshe Averbukh, 2023. "Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea," Energies, MDPI, vol. 16(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4272-:d:1153739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    2. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    3. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "Grid matching of large-scale wind energy conversion systems, alone and in tandem with large-scale photovoltaic systems: An Israeli case study," Energy Policy, Elsevier, vol. 38(11), pages 7070-7081, November.
    5. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    6. Hamdy M. Sultan & Ahmed A. Zaki Diab & Oleg N. Kuznetsov & Ziad M. Ali & Omer Abdalla, 2019. "Evaluation of the Impact of High Penetration Levels of PV Power Plants on the Capacity, Frequency and Voltage Stability of Egypt’s Unified Grid," Energies, MDPI, vol. 12(3), pages 1-22, February.
    7. Julian D. Hunt & Edward Byers & Yoshihide Wada & Simon Parkinson & David E. H. J. Gernaat & Simon Langan & Detlef P. Vuuren & Keywan Riahi, 2020. "Global resource potential of seasonal pumped hydropower storage for energy and water storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    8. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    9. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    10. Sontake, Vimal Chand & Kalamkar, Vilas R., 2016. "Solar photovoltaic water pumping system - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1038-1067.
    11. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Comello, Stephen & Reichelstein, Stefan & Sahoo, Anshuman, 2018. "The road ahead for solar PV power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 744-756.
    13. Glenk, Gunther & Meier, Rebecca & Reichelstein, Stefan, 2021. "Cost dynamics of clean energy technologies," ZEW Discussion Papers 21-054, ZEW - Leibniz Centre for European Economic Research.
    14. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    15. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.
    16. Comello, Stephen & Reichelstein, Stefan J. & Sahoo, Anshuman, 2018. "The Road ahead for Solar PV Power," Research Papers 3620, Stanford University, Graduate School of Business.
    17. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    18. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    19. Milstein, Irena & Tishler, Asher & Woo, Chi-Keung, 2022. "Wholesale electricity market economics of solar generation in Israel," Utilities Policy, Elsevier, vol. 79(C).
    20. Solomon, A.A. & Faiman, D. & Meron, G., 2010. "Properties and uses of storage for enhancing the grid penetration of very large photovoltaic systems," Energy Policy, Elsevier, vol. 38(9), pages 5208-5222, September.
    21. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    22. Shailendra Rajput & Ido Amiel & Moshe Sitbon & Ilan Aharon & Moshe Averbukh, 2020. "Control the Voltage Instabilities of Distribution Lines using Capacitive Reactive Power," Energies, MDPI, vol. 13(4), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mittelman, Gur & Eran, Ronen & Zhivin, Lev & Eisenhändler, Ohad & Luzon, Yossi & Tshuva, Moshe, 2023. "The potential of renewable electricity in isolated grids: The case of Israel in 2050," Applied Energy, Elsevier, vol. 349(C).
    2. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    3. Francisco José Gimeno-Sales & Salvador Orts-Grau & Alejandro Escribá-Aparisi & Pablo González-Altozano & Ibán Balbastre-Peralta & Camilo Itzame Martínez-Márquez & María Gasque & Salvador Seguí-Chilet, 2020. "PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    4. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Jurasz, Jakub & Dąbek, Paweł B. & Barbosa, Paulo Sergio Franco & Brandão, Roberto & de Castro, Nivalde José & Leal Filho, Walter & Riahi, Ke, 2022. "Lift Energy Storage Technology: A solution for decentralized urban energy storage," Energy, Elsevier, vol. 254(PA).
    5. Julian David Hunt & Behnam Zakeri & Jakub Jurasz & Wenxuan Tong & Paweł B. Dąbek & Roberto Brandão & Epari Ritesh Patro & Bojan Đurin & Walter Leal Filho & Yoshihide Wada & Bas van Ruijven & Keywan Ri, 2023. "Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage," Energies, MDPI, vol. 16(2), pages 1-20, January.
    6. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    7. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    9. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    10. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    11. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    12. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement," Energy Policy, Elsevier, vol. 48(C), pages 479-486.
    13. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    14. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    15. Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
    16. Victor Vega-Garita & Muhammad Faizal Sofyan & Nishant Narayan & Laura Ramirez-Elizondo & Pavol Bauer, 2018. "Energy Management System for the Photovoltaic Battery Integrated Module," Energies, MDPI, vol. 11(12), pages 1-20, December.
    17. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Li, Jianhui & Zhang, Wei & Xie, Lingzhi & Li, Zihao & Wu, Xin & Zhao, Oufan & Zhong, Jianmei & Zeng, Xiding, 2022. "A hybrid photovoltaic and water/air based thermal(PVT) solar energy collector with integrated PCM for building application," Renewable Energy, Elsevier, vol. 199(C), pages 662-671.
    19. Tan, Qiaofeng & Nie, Zhuang & Wen, Xin & Su, Huaying & Fang, Guohua & Zhang, Ziyi, 2024. "Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations," Applied Energy, Elsevier, vol. 355(C).
    20. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4272-:d:1153739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.