IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v150y2021ics1364032121007693.html
   My bibliography  Save this article

Implementing the dynamic simulation approach for the design and optimization of ships energy systems: Methodology and applicability to modern cruise ships

Author

Listed:
  • Barone, G.
  • Buonomano, A.
  • Forzano, C.
  • Palombo, A.

Abstract

To reduce the environmental impact of modern cruise ships, a crucial role is played by the recovery of waste heat from onboard diesel generators used to balance part of the onboard thermal energy demand. To maximize the recovered waste heat, this paper proposes a novel design methodology for ships energy systems based on the dynamic simulation approach, suitably enhanced to consider moving objects like ships. Through this approach, partial load regimes due to variable energy requirements and the relative response of innovative energy saving technologies are dynamically assessed by properly considering real cruising conditions as a function of the current ship position along its route. To this aim, 3-D ship envelope models, detailed energy ship-plant system layouts, and algorithms for deriving new customized hourly weather data files are suitably developed in MatLab and TRNSYS. To show the capability and potentials of the proposed methodology, a novel case study referred to an LNG-powered cruise ship traveling in the Norwegian fjords sea is presented. Different thermally and electrically activated technologies are coupled in 16 energy ship-plant system layouts, implementing novel controls strategies for optimizing the exploitation of the waste heat recoveries and cold-ironing. Encouraging results are achieved for the best layout, including primary energy savings of 18.1%, avoided pollutants emissions of 24.4 ktCO2/y, 40.0 tNOx/y, 90.0 tSOx/y, 84.0 tPM2.5/y, and a simple payback of 0.68 years. Finally, the proposed methodology represents a step forward toward the modern early design of onboard ship energy systems useful for ship designers, manufacturers, owners and operators.

Suggested Citation

  • Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2021. "Implementing the dynamic simulation approach for the design and optimization of ships energy systems: Methodology and applicability to modern cruise ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007693
    DOI: 10.1016/j.rser.2021.111488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121007693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sapra, Harsh & Stam, Jelle & Reurings, Jeroen & van Biert, Lindert & van Sluijs, Wim & de Vos, Peter & Visser, Klaas & Vellayani, Aravind Purushothaman & Hopman, Hans, 2021. "Integration of solid oxide fuel cell and internal combustion engine for maritime applications," Applied Energy, Elsevier, vol. 281(C).
    2. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2015. "Molten carbonate fuel cell: An experimental analysis of a 1kW system fed by landfill gas," Applied Energy, Elsevier, vol. 140(C), pages 146-160.
    3. Baldi, Francesco & Moret, Stefano & Tammi, Kari & Maréchal, François, 2020. "The role of solid oxide fuel cells in future ship energy systems," Energy, Elsevier, vol. 194(C).
    4. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    6. Zis, Thalis P.V., 2019. "Prospects of cold ironing as an emissions reduction option," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 82-95.
    7. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    8. Francesco Baldi & Fredrik Ahlgren & Tuong-Van Nguyen & Marcus Thern & Karin Andersson, 2018. "Energy and Exergy Analysis of a Cruise Ship," Energies, MDPI, vol. 11(10), pages 1-41, September.
    9. Marco Altosole & Giovanni Benvenuto & Ugo Campora & Federico Silvestro & Giulio Terlizzi, 2018. "Efficiency Improvement of a Natural Gas Marine Engine Using a Hybrid Turbocharger," Energies, MDPI, vol. 11(8), pages 1-13, July.
    10. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    11. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    12. Linda Barelli & Gianni Bidini & Federico Gallorini & Francesco Iantorno & Nicola Pane & Panfilo Andrea Ottaviano & Lorenzo Trombetti, 2018. "Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat," Energies, MDPI, vol. 11(10), pages 1-17, September.
    13. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.
    14. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    15. Aleksandar Cuculić & Dubravko Vučetić & Rene Prenc & Jasmin Ćelić, 2019. "Analysis of Energy Storage Implementation on Dynamically Positioned Vessels," Energies, MDPI, vol. 12(3), pages 1-19, January.
    16. Lion, Simone & Taccani, Rodolfo & Vlaskos, Ioannis & Scrocco, Pietro & Vouvakos, Xenakis & Kaiktsis, Lambros, 2019. "Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation," Energy, Elsevier, vol. 183(C), pages 48-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Barone & Annamaria Buonomano & Cesare Forzano & Giovanni Francesco Giuzio & Adolfo Palombo, 2021. "Improving the Efficiency of Maritime Infrastructures through a BIM-Based Building Energy Modelling Approach: A Case Study in Naples, Italy," Energies, MDPI, vol. 14(16), pages 1-24, August.
    2. Vassiliades, C. & Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A., 2022. "Assessment of an innovative plug and play PV/T system integrated in a prefabricated house unit: Active and passive behaviour and life cycle cost analysis," Renewable Energy, Elsevier, vol. 186(C), pages 845-863.
    3. Barone, Giovanni & Buonomano, Annamaria & Chang, Roma & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, Aggelos, 2022. "Modelling and simulation of building integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) systems: Comprehensive energy and economic analysis," Renewable Energy, Elsevier, vol. 193(C), pages 1121-1131.
    4. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2023. "Multi-objective optimization for comparative energy and economic analyses of a novel evacuated solar collector prototype (ICSSWH) under different weather conditions," Renewable Energy, Elsevier, vol. 210(C), pages 701-714.
    5. Zhu, Jianyun & Chen, Li, 2023. "A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran," Applied Energy, Elsevier, vol. 350(C).
    6. Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A., 2023. "New ventilation design criteria for energy sustainability and indoor air quality in a post Covid-19 scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2022. "Energy, economic, and environmental impacts of enhanced ventilation strategies on railway coaches to reduce Covid-19 contagion risks," Energy, Elsevier, vol. 256(C).
    8. Pivetta, D. & Dall’Armi, C. & Sandrin, P. & Bogar, M. & Taccani, R., 2024. "The role of hydrogen as enabler of industrial port area decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Andrea Frazzica & Marco Manzan & Valeria Palomba & Vincenza Brancato & Angelo Freni & Amedeo Pezzi & Bianca M. Vaglieco, 2022. "Experimental Validation and Numerical Simulation of a Hybrid Sensible-Latent Thermal Energy Storage for Hot Water Provision on Ships," Energies, MDPI, vol. 15(7), pages 1-23, April.
    10. Barone, Giovanni & Buonomano, Annamaria & Del Papa, Gianluca & Maka, Robert & Palombo, Adolfo, 2023. "How to achieve energy efficiency and sustainability of large ships: a new tool to optimize the operation of on-board diesel generators," Energy, Elsevier, vol. 282(C).
    11. Yiğit, Kenan, 2022. "Evaluation of energy efficiency potentials from generator operations on vessels," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    2. Bolbot, Victor & Trivyza, Nikoletta L. & Theotokatos, Gerasimos & Boulougouris, Evangelos & Rentizelas, Athanasios & Vassalos, Dracos, 2020. "Cruise ships power plant optimisation and comparative analysis," Energy, Elsevier, vol. 196(C).
    3. Petronilla Fragiacomo & Francesco Piraino & Matteo Genovese & Orlando Corigliano & Giuseppe De Lorenzo, 2023. "Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors," Energies, MDPI, vol. 16(15), pages 1-25, July.
    4. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    5. Niknam, Pouriya H. & Fisher, Robin & Ciappi, Lorenzo & Sciacovelli, Adriano, 2024. "Optimally integrated waste heat recovery through combined emerging thermal technologies: Modelling, optimization and assessment for onboard multi-energy systems," Applied Energy, Elsevier, vol. 366(C).
    6. Batista, Natasha E. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2023. "Optimizing methodologies of hybrid renewable energy systems powered reverse osmosis plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Luca Micoli & Roberta Russo & Tommaso Coppola & Andrea Pietra, 2023. "Performance Assessment of the Heat Recovery System of a 12 MW SOFC-Based Generator on Board a Cruise Ship through a 0D Model," Energies, MDPI, vol. 16(8), pages 1-14, April.
    9. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Enrico Baldasso & Maria E. Mondejar & Ulrik Larsen & Fredrik Haglind, 2020. "Regression Models for the Evaluation of the Techno-Economic Potential of Organic Rankine Cycle-Based Waste Heat Recovery Systems on Board Ships Using Low Sulfur Fuels," Energies, MDPI, vol. 13(6), pages 1-20, March.
    11. David Bienvenido-Huertas & Juan Moyano & Carlos E. Rodríguez-Jiménez & Aurelio Muñoz-Rubio & Francisco Javier Bermúdez Rodríguez, 2020. "Quality Control of the Thermal Properties of Superstructures in Accommodation Spaces in Naval Constructions," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    12. Mahmoudi, Ali & Bostani, Mohammad & Rashidi, Saman & Valipour, Mohammad Sadegh, 2023. "Challenges and opportunities of desalination with renewable energy resources in Middle East countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Vichos, Emmanouil & Sifakis, Nikolaos & Tsoutsos, Theocharis, 2022. "Challenges of integrating hydrogen energy storage systems into nearly zero-energy ports," Energy, Elsevier, vol. 241(C).
    14. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    15. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.
    16. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    17. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    19. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    20. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.