IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v350y2023ics0306261923011686.html
   My bibliography  Save this article

Zinc carboxylate optimization strategy for extending Al-air battery system's lifetime

Author

Listed:
  • Wei, Manhui
  • Wang, Keliang
  • Pei, Pucheng
  • Zhong, Liping
  • Züttel, Andreas
  • Pham, Thi Ha My
  • Shang, Nuo
  • Zuo, Yayu
  • Wang, Hengwei
  • Zhao, Siyuan

Abstract

Although Al-air batteries are expected to be the candidates for energy conversion systems in renewable energy market due to the higher energy density, richer reserves, and lighter mass of Al metal, the anode self-discharge is seen as a notorious issue that seriously sacrifices battery durability and stability. Herein, we propose zinc carboxylate inhibition of anode self-discharge for enhancing Al-air battery's lifetime, where the ionized Zn2+ induces a Zn guard on Al surface, and the hydrolysate RCOOH dominates an adsorption layer on the outer surface of Zn, ensuring a double protection for metal anode by means of advanced “one stone two birds” strategy. The results show that the typical zinc carboxylates improve the absolute anticorrosion efficiency of anode greatly, especially the maximum of 92.24% after zinc malate optimization. Furthermore, battery capacity and anode efficiency are as high as 2685.20 mAh g−1 and 90.11% at 20 mA cm−2 respectively. The cyclic discharge lifetime of system (0.12 g fuel) exceeds 19.01 h, which is 1.72 times longer than traditional optimization. Finally, the optimization mechanism is revealed based on Monte Carlo simulation and density functional theory calculation, which the double CO groups in the hydrolysate of zinc malate dominates the harmonious interaction between RCOOH adsorption layer and active metals, exhibiting a high-energy efficiency and long-lifetime Al-air battery power system.

Suggested Citation

  • Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zhong, Liping & Züttel, Andreas & Pham, Thi Ha My & Shang, Nuo & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan, 2023. "Zinc carboxylate optimization strategy for extending Al-air battery system's lifetime," Applied Energy, Elsevier, vol. 350(C).
  • Handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011686
    DOI: 10.1016/j.apenergy.2023.121804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Binbin & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance," Applied Energy, Elsevier, vol. 185(P2), pages 1303-1308.
    2. Xu, Nengneng & Zhang, Yanxing & Wang, Yudong & Wang, Min & Su, Tianshun & Coco, Cameron A. & Qiao, Jinli & Zhou, Xiao-Dong, 2020. "Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries," Applied Energy, Elsevier, vol. 279(C).
    3. Zhuk, A.Z. & Shkolnikov, E.I. & Borodina, T.I. & Valiano, G.E. & Dolzhenko, A.V. & Kiseleva, E.A. & Kochanova, S.A. & Filippov, E.D. & Semenova, V.A., 2023. "Aluminium – Water hydrogen generator for domestic and mobile application," Applied Energy, Elsevier, vol. 334(C).
    4. Tan, P. & Shyy, W. & Zhao, T.S. & Zhang, R.H. & Zhu, X.B., 2016. "Effects of moist air on the cycling performance of non-aqueous lithium-air batteries," Applied Energy, Elsevier, vol. 182(C), pages 569-575.
    5. Wang, Yuanhui & Hao, Liang & Bai, Minli, 2023. "Modeling the influence of water on the performance of non-aqueous Li-O2 batteries," Applied Energy, Elsevier, vol. 330(PB).
    6. Pei, Pucheng & Huang, Shangwei & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Ren, Peng & Wang, Keliang & Jia, Xiaoning, 2019. "A high-energy-density and long-stable-performance zinc-air fuel cell system," Applied Energy, Elsevier, vol. 241(C), pages 124-129.
    7. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    8. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    9. Esfahanian, Vahid & Dalakeh, Muhammad Taghi & Aghamirzaie, Navid, 2019. "Mathematical modeling of oxygen crossover in a lithium-oxygen battery," Applied Energy, Elsevier, vol. 250(C), pages 1356-1365.
    10. Trocino, Stefano & Lo Faro, Massimiliano & Zignani, Sabrina Campagna & Antonucci, Vincenzo & Aricò, Antonino Salvatore, 2019. "High performance solid-state iron-air rechargeable ceramic battery operating at intermediate temperatures (500–650 °C)," Applied Energy, Elsevier, vol. 233, pages 386-394.
    11. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    12. Wei, Manhui & Wang, Keliang & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan & Zhang, Pengfei & Zhang, Songmao & Shui, Youfu & Pei, Pucheng & Chen, Junfeng, 2023. "Inner Zn layer and outer glutamic acid film as efficient dual-protective interface of Al anode in Al-air fuel cell," Energy, Elsevier, vol. 267(C).
    13. Guo, Changxiang & Cao, Yafei & Li, Junfeng & Li, Haipeng & Kumar Arumugam, Senthil & Oleksandr, Sokolskyi & Chen, Fei, 2022. "Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yifei & Kwok, Holly Y.H. & Pan, Wending & Zhang, Huimin & Lu, Xu & Leung, Dennis Y.C., 2019. "Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zuo, Yayu & Zhong, Liping & Shang, Nuo & Wang, Hengwei & Chen, Junfeng & Zhang, Pengfei & Chen, Zhuo, 2022. "An enhanced-performance Al-air battery optimizing the alkaline electrolyte with a strong Lewis acid ZnCl2," Applied Energy, Elsevier, vol. 324(C).
    3. Huang, Huiyu & Liu, Pengzhan & Ma, Qiuxia & Tang, Zihao & Wang, Mu & Hu, Junhui, 2023. "Airborne ultrasound catalyzed saltwater Al/Mg-air flow batteries," Energy, Elsevier, vol. 270(C).
    4. Gai, Wei-Zhuo & Deng, Zhen-Yan, 2024. "Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications," Renewable Energy, Elsevier, vol. 226(C).
    5. Wang, Yuanhui & Hao, Liang & Bai, Minli, 2023. "Modeling the influence of water on the performance of non-aqueous Li-O2 batteries," Applied Energy, Elsevier, vol. 330(PB).
    6. Pan, Lyuming & Chen, Dongfang & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries," Applied Energy, Elsevier, vol. 290(C).
    7. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    8. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    9. Xiao, Xu & Zhang, Zhuojun & Yu, Wentao & Shang, Wenxu & Ma, Yanyi & Tan, Peng, 2022. "Achieving a high-specific-energy lithium-carbon dioxide battery by implementing a bi-side-diffusion structure," Applied Energy, Elsevier, vol. 328(C).
    10. Alviani, Vani Novita & Hirano, Nobuo & Watanabe, Noriaki & Oba, Masahiro & Uno, Masaoki & Tsuchiya, Noriyoshi, 2021. "Local initiative hydrogen production by utilization of aluminum waste materials and natural acidic hot-spring water," Applied Energy, Elsevier, vol. 293(C).
    11. Tan, P. & Jiang, H.R. & Zhu, X.B. & An, L. & Jung, C.Y. & Wu, M.C. & Shi, L. & Shyy, W. & Zhao, T.S., 2017. "Advances and challenges in lithium-air batteries," Applied Energy, Elsevier, vol. 204(C), pages 780-806.
    12. Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Wei, Manhui & Wang, Keliang & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan & Zhang, Pengfei & Zhang, Songmao & Shui, Youfu & Pei, Pucheng & Chen, Junfeng, 2023. "Inner Zn layer and outer glutamic acid film as efficient dual-protective interface of Al anode in Al-air fuel cell," Energy, Elsevier, vol. 267(C).
    14. Mechili, Maria & Vaitsis, Christos & Argirusis, Nikolaos & Pandis, Pavlos K. & Sourkouni, Georgia & Argirusis, Christos, 2022. "Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    16. Dinesh Kumar Madheswaran & Mohanraj Thangamuthu & Sakthivel Gnanasekaran & Suresh Gopi & Tamilvanan Ayyasamy & Sujit S. Pardeshi, 2023. "Powering the Future: Progress and Hurdles in Developing Proton Exchange Membrane Fuel Cell Components to Achieve Department of Energy Goals—A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-24, November.
    17. Esfahanian, Vahid & Dalakeh, Muhammad Taghi & Aghamirzaie, Navid, 2019. "Mathematical modeling of oxygen crossover in a lithium-oxygen battery," Applied Energy, Elsevier, vol. 250(C), pages 1356-1365.
    18. Shang, Wenxu & Yu, Wentao & Xiao, Xu & Ma, Yanyi & Chen, Ziqi & Ni, Meng & Tan, Peng, 2022. "Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries," Applied Energy, Elsevier, vol. 308(C).
    19. Haller, Michel Y. & Amstad, Dominik & Dudita, Mihaela & Englert, Alexander & Häberle, Andreas, 2021. "Combined heat and power production based on renewable aluminium-water reaction," Renewable Energy, Elsevier, vol. 174(C), pages 879-893.
    20. Zeng, Zilong & Jing, Dengwei & Guo, Liejin, 2021. "Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.