IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922008819.html
   My bibliography  Save this article

Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries

Author

Listed:
  • Guo, Changxiang
  • Cao, Yafei
  • Li, Junfeng
  • Li, Haipeng
  • Kumar Arumugam, Senthil
  • Oleksandr, Sokolskyi
  • Chen, Fei

Abstract

Fire-resistant and self-healing flexible electrolytes are a promising alternative to address thermal runaway in lithium batteries. However, self-healing electrolytes for lithium batteries are not widely used due to their low ionic conductivity, limited self-healing ability, and potential combustion risk. Ionic liquid-based polymer electrolytes are a simple and effective approach to obtaining polymer solid electrolytes with high ionic conductivity, fast self-healing and flame retardant properties. In this work, methyl methacrylate (MMA) and 1-Allyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide (AMIMTFSI) are used as the membrane-forming backbone and also possess ion transport channels. 1-ethyl-3 methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIMTFSI) is added to the membrane to further enhance the ionic conductivity. Due to the existence of ionic liquid units and free ionic liquids in the prepared electrolytes, the fast interaction of ionic bonds confers a faster self-healing ability to the films, and the flame retardancy of the ionic liquids is fully maintained after polymerization. The prepared electrolytes show good flame retardance properties, excellent mechanical properties (tensile rate is ∼ 400%), high thermal decomposition temperature (>260 °C), and can effectively enhance the reliability of lithium metal batteries. When ionic liquids filler mass fraction is 40%, the polymer electrolytes have an ionic conductivity of 1.9 × 10-4 S cm−1, a decomposition voltage of 4.6 V (vs. Li/Li+), and can achieve an initial discharge capacity of 134.9 mAh g−1 with a capacity retention of 96.4% after 90 cycles at 0.1C for LiFePO4/Li half-cell at 25 °C.

Suggested Citation

  • Guo, Changxiang & Cao, Yafei & Li, Junfeng & Li, Haipeng & Kumar Arumugam, Senthil & Oleksandr, Sokolskyi & Chen, Fei, 2022. "Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008819
    DOI: 10.1016/j.apenergy.2022.119571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chuang Yu & Swapna Ganapathy & Ernst R. H. van Eck & Heng Wang & Shibabrata Basak & Zhaolong Li & Marnix Wagemaker, 2017. "Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    3. Ruiz, V. & Pfrang, A. & Kriston, A. & Omar, N. & Van den Bossche, P. & Boon-Brett, L., 2018. "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1427-1452.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zhong, Liping & Züttel, Andreas & Pham, Thi Ha My & Shang, Nuo & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan, 2023. "Zinc carboxylate optimization strategy for extending Al-air battery system's lifetime," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    2. Lalinde, Iñaki & Berrueta, Alberto & Arza, Joseba & Sanchis, Pablo & Ursúa, Alfredo, 2024. "On the characterization of lithium-ion batteries under overtemperature and overcharge conditions: Identification of abuse areas and experimental validation," Applied Energy, Elsevier, vol. 354(PB).
    3. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    5. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    6. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    7. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    8. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    10. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    12. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    13. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2021. "Lessons from the Electric Vehicle Crashworthiness Leading to Battery Fire," Energies, MDPI, vol. 14(16), pages 1-21, August.
    15. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    16. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    17. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    18. Prakash Venugopal & Vigneswaran T., 2019. "State-of-Health Estimation of Li-ion Batteries in Electric Vehicle Using IndRNN under Variable Load Condition," Energies, MDPI, vol. 12(22), pages 1-29, November.
    19. Zhihao Wang & Xuan Tang & Youhang Zhou & Hai Huang & Haifeng Dai, 2024. "Experimental and Modeling Analysis of Thermal Runaway for LiNi 0.5 Mn 0.3 Co 0.2 O 2 /Graphite Pouch Cell Triggered by Surface Heating," Energies, MDPI, vol. 17(4), pages 1-16, February.
    20. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.