IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v340y2024i1d10.1007_s10479-023-05301-w.html
   My bibliography  Save this article

Data-driven reliability and resilience measure of transportation systems considering disaster levels

Author

Listed:
  • Hongyan Dui

    (Zhengzhou University)

  • Kaixin Liu

    (Zhengzhou University)

  • Shaomin Wu

    (University of Kent)

Abstract

With the development of economic globalization and increasing international trade, the maritime transportation system (MTS) is becoming more and more complex. A failure of any supply line in the MTS can seriously affect the operation of the system. Resilience describes the ability of a system to withstand or recover from a disaster and is therefore an important method of disaster management in MTS. This paper analyzes the impact of disasters on MTS, using the data of Suez Canal "Century of Congestion" as an example. In practice, the severity of a disaster is dynamic. This paper categorizes disasters into different levels, which are then modelled by the Markov chain. The concept of a repair line set is proposed and is determined with the aim to minimize the total loss and maximize the resilience increment of the line to the system. The resilience measure of MTS is defined to determine the repair line sequence in the repair line set. Finally, a maritime transportation system network from the Far East to the Mediterranean Sea is used to validate the applicability of the proposed method.

Suggested Citation

  • Hongyan Dui & Kaixin Liu & Shaomin Wu, 2024. "Data-driven reliability and resilience measure of transportation systems considering disaster levels," Annals of Operations Research, Springer, vol. 340(1), pages 217-243, September.
  • Handle: RePEc:spr:annopr:v:340:y:2024:i:1:d:10.1007_s10479-023-05301-w
    DOI: 10.1007/s10479-023-05301-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05301-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05301-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:340:y:2024:i:1:d:10.1007_s10479-023-05301-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.