IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261922017937.html
   My bibliography  Save this article

Resiliency-Oriented operation of distribution networks under unexpected wildfires using Multi-Horizon Information-Gap decision theory

Author

Listed:
  • Izadi, Mehdi
  • Hossein Hosseinian, Seyed
  • Dehghan, Shahab
  • Fakharian, Ahmad
  • Amjady, Nima

Abstract

Extreme events may trigger cascading outages of different components in power systems and cause a substantial loss of load. Forest wildfires, as a common type of extreme events, may damage transmission/distribution lines across the forest and disconnect a large number of consumers from the electric network. Hence, this paper presents a robust scheduling model based on the notion of information-gap decision theory (IGDT) to enhance the resilience of a distribution network exposed to wildfires. Since the thermal rating of a transmission/distribution line is a function of its temperature and current, it is assumed that the tie-line connecting the distribution network to the main grid is equipped with a dynamic thermal rating (DTR) system aiming at accurately evaluating the impact of a wildfire on the ampacity of the tie-line. The proposed approach as a multi-horizon IGDT-based optimization problem finds a robust operation plan protected against the uncertainty of wind power, solar power, load, and ampacity of tie-lines under a specific uncertainty budget (UB). Since all uncertain parameters compete to maximize their robust regions under a specific uncertainty budget, the proposed multi-horizon IGDT-based model is solved by the augmented normalized normal constraint (ANNC) method as an effective multi-objective optimization approach. Moreover, a posteriori out-of-sample analysis is used to find (i) the best solution among the set of Pareto optimal solutions obtained from the ANNC method given a specific uncertainty budget, and (ii) the best resiliency level by varying the uncertainty budget and finding the optimal uncertainty budget. The proposed approach is tested on a 33-bus distribution network under different circumstances. The case study under different conditions verifies the effectiveness of the proposed operation planning model to enhance the resilience of a distribution network under a close wildfire.

Suggested Citation

  • Izadi, Mehdi & Hossein Hosseinian, Seyed & Dehghan, Shahab & Fakharian, Ahmad & Amjady, Nima, 2023. "Resiliency-Oriented operation of distribution networks under unexpected wildfires using Multi-Horizon Information-Gap decision theory," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261922017937
    DOI: 10.1016/j.apenergy.2022.120536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    2. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2015. "Resilience framework for critical infrastructures: An empirical study in a nuclear plant," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 92-105.
    3. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    4. Ehsan, Ali & Yang, Qiang, 2019. "State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review," Applied Energy, Elsevier, vol. 239(C), pages 1509-1523.
    5. Aldarajee, Ammar H.M. & Hosseinian, Seyed H. & Vahidi, Behrooz, 2020. "A secure tri-level planner-disaster-risk-averse replanner model for enhancing the resilience of energy systems," Energy, Elsevier, vol. 204(C).
    6. Jufri, Fauzan Hanif & Widiputra, Victor & Jung, Jaesung, 2019. "State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies," Applied Energy, Elsevier, vol. 239(C), pages 1049-1065.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Hong & Wang, Yuwei & Wang, Qiujie & Lin, Zhenjia & Mohamed, Mohamed A., 2024. "Day-ahead dispatch of electricity-hydrogen systems under solid-state transportation mode of hydrogen energy via FV-IGDT approach," Energy, Elsevier, vol. 300(C).
    2. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    3. Yin, Linfei & Cai, Zhenjian, 2024. "Multimodal multi-objective hierarchical distributed consensus method for multimodal multi-objective economic dispatch of hierarchical distributed power systems," Energy, Elsevier, vol. 295(C).
    4. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Ma, Ziyao & Huang, Jiajin, 2024. "Equilibrium configuration strategy of vehicle-to-grid-based electric vehicle charging stations in low-carbon resilient distribution networks," Applied Energy, Elsevier, vol. 361(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Hui & Tang, Junyi & Zhang, Zhiwei & Wang, Zhuo & Wei, Ruizeng & Wang, Lei & He, Huan & Wu, Xixiu, 2023. "Resilience enhancement of distribution network under typhoon disaster based on two-stage stochastic programming," Applied Energy, Elsevier, vol. 338(C).
    2. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Cesar A. Vega Penagos & Jan L. Diaz & Omar F. Rodriguez-Martinez & Fabio Andrade & Adriana C. Luna, 2023. "Metrics and Strategies Used in Power Grid Resilience," Energies, MDPI, vol. 17(1), pages 1-16, December.
    4. Wang, Han & Hou, Kai & Zhao, Junbo & Yu, Xiaodan & Jia, Hongjie & Mu, Yunfei, 2022. "Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters," Applied Energy, Elsevier, vol. 315(C).
    5. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).
    6. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Centralized vs. Decentralized Electric Grid Resilience Analysis Using Leontief’s Input–Output Model," Energies, MDPI, vol. 17(6), pages 1-21, March.
    8. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    9. Joyce Nyuma Chivunga & Zhengyu Lin & Richard Blanchard, 2023. "Power Systems’ Resilience: A Comprehensive Literature Review," Energies, MDPI, vol. 16(21), pages 1-31, October.
    10. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Shabazbegian, Vahid & Ameli, Hossein & Ameli, Mohammad Taghi & Strbac, Goran & Qadrdan, Meysam, 2021. "Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach," Applied Energy, Elsevier, vol. 284(C).
    12. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    13. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    14. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Marius Eugen Țiboacă-Ciupăgeanu & Dana Alexandra Țiboacă-Ciupăgeanu, 2024. "Optimal Substation Placement: A Paradigm for Advancing Electrical Grid Sustainability," Sustainability, MDPI, vol. 16(10), pages 1-14, May.
    16. Sang-Guk Yum & Kiyoung Son & Seunghyun Son & Ji-Myong Kim, 2020. "Identifying Risk Indicators for Natural Hazard-Related Power Outages as a Component of Risk Assessment: An Analysis Using Power Outage Data from Hurricane Irma," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    17. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    19. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    20. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261922017937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.