IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009789.html
   My bibliography  Save this article

Deep learning framework for day-ahead optimal charging scheduling of electric vehicles in parking lot

Author

Listed:
  • Gharibi, Mohamad Amin
  • Nafisi, Hamed
  • Askarian-abyaneh, Hossein
  • Hajizadeh, Amin

Abstract

The increase of electric vehicles (EVs) in the power system, in addition to environmental benefits, also has economic advantages. Charging parking lots can perform better economically through aggregators the benefits of participating in energy markets and developing different charging programs. The main challenge for participating in the electricity market for parking lots is the uncertainties in the behavior of EV owners and the day-ahead market (DAM) price. Therefore, this paper proposes a deep learning-based framework for day-ahead optimal charging scheduling, which is in three stages. In the first stage, the parameters of charging sessions are modeled using the proposed Copula generative adversarial network (CopulaGAN). In the second stage, the DAM price is forecasted using the time series multi-input nonlinear autoregressive neural network for 24 h ahead. In addition, in the proposed framework, the balancing energy market (BEM) is used to keep the charging power balance on the implementation day of the optimal charging program. In the third stage, optimal day-ahead EV scheduling is performed. The simulation is carried out using Grey Wolf Optimization (GWO) based on the Caltech charging sessions dataset and the Germany energy market dataset. The simulation results show that using the proposed deep learning framework reduces the charging cost for the parking lots compared to the fixed price approaches, the use of the BEM, the time of use (TOU) program, and using normal distribution modeling about 19.94 €, 159.97 €, 14.27 €, and 114.03 € respectively.

Suggested Citation

  • Gharibi, Mohamad Amin & Nafisi, Hamed & Askarian-abyaneh, Hossein & Hajizadeh, Amin, 2023. "Deep learning framework for day-ahead optimal charging scheduling of electric vehicles in parking lot," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009789
    DOI: 10.1016/j.apenergy.2023.121614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Jun & Lie, T.T. & Zamora, Ramon, 2020. "A rolling horizon scheduling of aggregated electric vehicles charging under the electricity exchange market," Applied Energy, Elsevier, vol. 275(C).
    2. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Arévalo, Paul & Turky, Rania A. & Jurado, Francisco, 2022. "A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations," Energy, Elsevier, vol. 253(C).
    3. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bagheri Tookanlou, Mahsa & Pourmousavi, S. Ali & Marzband, Mousa, 2023. "A three-layer joint distributionally robust chance-constrained framework for optimal day-ahead scheduling of e-mobility ecosystem," Applied Energy, Elsevier, vol. 331(C).
    2. Lei, Xiang & Yu, Hang & Shao, Ziyun & Jian, Linni, 2023. "Optimal bidding and coordinating strategy for maximal marginal revenue due to V2G operation: Distribution system operator as a key player in China's uncertain electricity markets," Energy, Elsevier, vol. 283(C).
    3. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    4. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    5. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    6. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    7. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    8. Yubo Wang & Weiqing Sun, 2024. "A Two-Stage Robust Pricing Strategy for Electric Vehicle Aggregators Considering Dual Uncertainty in Electricity Demand and Real-Time Electricity Prices," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    9. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
    10. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Zhou, Yuekuan & Mansouri, Seyed Amir & Jurado, Francisco, 2024. "Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations," Renewable Energy, Elsevier, vol. 225(C).
    11. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).
    12. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    13. Bahman Ahmadi & Elham Shirazi, 2023. "A Heuristic-Driven Charging Strategy of Electric Vehicle for Grids with High EV Penetration," Energies, MDPI, vol. 16(19), pages 1-26, October.
    14. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    15. Wang, Yubin & Yang, Qiang & Zhou, Yue & Zheng, Yanchong, 2024. "A risk-averse day-ahead bidding strategy of transactive energy sharing microgrids with data-driven chance constraints," Applied Energy, Elsevier, vol. 353(PB).
    16. Chang, Weiguang & Yang, Qiang, 2023. "Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading," Applied Energy, Elsevier, vol. 351(C).
    17. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
    18. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    19. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Day-ahead bidding strategy of regional integrated energy systems considering multiple uncertainties in electricity markets," Applied Energy, Elsevier, vol. 348(C).
    20. Bogdan Gilev & Miroslav Andreev & Nikolay Hinov & George Angelov, 2022. "Modeling and Simulation of a Low-Cost Fast Charging Station Based on a Micro Gas Turbine and a Supercapacitor," Energies, MDPI, vol. 15(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.