IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v343y2023ics0306261923005512.html
   My bibliography  Save this article

Feedback-based fault-tolerant and health-adaptive optimal charging of batteries

Author

Listed:
  • Sattarzadeh, Sara
  • Padisala, Shanthan K.
  • Shi, Ying
  • Mishra, Partha Pratim
  • Smith, Kandler
  • Dey, Satadru

Abstract

The key technology barriers that hinder the growth of Electric Vehicles (EVs) are long charging time, the shorter life-time of EV batteries, and battery safety. Specifically, EV charging protocols have significant effects on battery lifetime and safety. If not charged properly, the battery could end up with shorter life, and more importantly, improper charging can cause battery faults leading to catastrophic failures. To overcome these barriers, we propose a closed-loop feedback based approach, that enables real-time optimal fast charging protocol adaptation to battery health and possess active diagnostic capabilities in the sense that, during charging, it detects real-time faults and takes corrective action to mitigate such fault effects. We utilize battery electrical–thermal model, explicit battery capacity and power fade aging models, and thermal fault model to capture battery behavior. In conjunction with the models, we adopt linear quadratic optimal control techniques to realize the feedback-based control algorithm. Simulation studies are presented to illustrate the effectiveness of the proposed scheme.

Suggested Citation

  • Sattarzadeh, Sara & Padisala, Shanthan K. & Shi, Ying & Mishra, Partha Pratim & Smith, Kandler & Dey, Satadru, 2023. "Feedback-based fault-tolerant and health-adaptive optimal charging of batteries," Applied Energy, Elsevier, vol. 343(C).
  • Handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005512
    DOI: 10.1016/j.apenergy.2023.121187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-16, July.
    2. Mishra, Partha Pratim & Latif, Aadil & Emmanuel, Michael & Shi, Ying & McKenna, Killian & Smith, Kandler & Nagarajan, Adarsh, 2020. "Analysis of degradation in residential battery energy storage systems for rate-based use-cases," Applied Energy, Elsevier, vol. 264(C).
    3. Abdel-Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Van den Bossche, Peter & Van Mierlo, Joeri, 2017. "Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries," Energy, Elsevier, vol. 120(C), pages 179-191.
    4. Zou, Changfu & Hu, Xiaosong & Wei, Zhongbao & Tang, Xiaolin, 2017. "Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control," Energy, Elsevier, vol. 141(C), pages 250-259.
    5. Chu, Zhengyu & Feng, Xuning & Lu, Languang & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2017. "Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model," Applied Energy, Elsevier, vol. 204(C), pages 1240-1250.
    6. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Changfu & Hu, Xiaosong & Wei, Zhongbao & Tang, Xiaolin, 2017. "Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control," Energy, Elsevier, vol. 141(C), pages 250-259.
    2. Neha Bhushan & Saad Mekhilef & Kok Soon Tey & Mohamed Shaaban & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "Overview of Model- and Non-Model-Based Online Battery Management Systems for Electric Vehicle Applications: A Comprehensive Review of Experimental and Simulation Studies," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    3. Xu, Meng & Wang, Xia & Zhang, Liwen & Zhao, Peng, 2021. "Comparison of the effect of linear and two-step fast charging protocols on degradation of lithium ion batteries," Energy, Elsevier, vol. 227(C).
    4. Mathieu, Romain & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2021. "Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures," Applied Energy, Elsevier, vol. 283(C).
    5. Lin, Qian & Wang, Jun & Xiong, Rui & Shen, Weixiang & He, Hongwen, 2019. "Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries," Energy, Elsevier, vol. 183(C), pages 220-234.
    6. Lai, Xin & Huang, Yunfeng & Deng, Cong & Gu, Huanghui & Han, Xuebing & Zheng, Yuejiu & Ouyang, Minggao, 2021. "Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Yang, Xiaofeng & He, Hongwen & Wei, Zhongbao & Wang, Rui & Xu, Ke & Zhang, Dong, 2023. "Enabling Safety-Enhanced fast charging of electric vehicles via soft actor Critic-Lagrange DRL algorithm in a Cyber-Physical system," Applied Energy, Elsevier, vol. 329(C).
    8. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    9. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    10. Li, Niansi & Liu, Xiaoyong & Yu, Bendong & Li, Liang & Xu, Jianqiang & Tan, Qiong, 2021. "Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions," Energy, Elsevier, vol. 219(C).
    11. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    12. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    13. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    14. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    15. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    16. Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
    17. Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
    18. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    19. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    20. Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.