IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924020178.html
   My bibliography  Save this article

Feature engineering-driven multi-scale voltage anomaly detection for Lithium-ion batteries in real-world electric vehicles

Author

Listed:
  • Li, Shuowei
  • Zhang, Caiping
  • Du, Jingcai
  • Zhang, Linjing
  • Jiang, Yan

Abstract

Battery fault diagnosis and thermal runaway warnings hold significant implications for the safety of electric vehicles. However, developing a reliable battery fault detection method that encompasses voltage anomaly patterns remains challenging due to the concealment and uncertainty of anomalies under complex profiles. A framework for detecting battery multi-scale voltage anomalies using feature engineering is proposed. Hundreds of dimensionless indicators (DIs) are constructed by assigning parameters to the unified mathematical model of DI. The Laplacian Score and Sequential Forward Selection are then successively implemented on all DIs to analyze their sensitivity and redundancy to anomalies. The optimal DI set, which includes two DI central moments for short-timescale discharging anomalies and a waveform factor for short-timescale charging anomalies and long-timescale anomalies, is screened out as the most sensitive features. The adaptive clustering algorithm is applied to the standardized differential DI set for anomaly isolation, and the standardized differential voltage is calculated to identify voltage anomaly patterns. The proposed method is designed to distill the optimal feature set for multi-scale battery voltage anomalies and amplify minor abnormal fluctuations of battery voltage signals into conspicuous outliers. The robustness has been corroborated using data from 197 electric vehicles, yielding an accuracy of 96.95 %. The method offers precise delineation of the patterns and moments of voltage anomalies and can provide early warnings for battery systems in real-world electric vehicles.

Suggested Citation

  • Li, Shuowei & Zhang, Caiping & Du, Jingcai & Zhang, Linjing & Jiang, Yan, 2025. "Feature engineering-driven multi-scale voltage anomaly detection for Lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020178
    DOI: 10.1016/j.apenergy.2024.124634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.